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ABSTRACT

Three -dimensional, incompressible turbulent jets with rectangular and elliptical

cross-sections are simulted with a finite-difference numerical method. The full Navier-

Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers

filtered forms of the equations are solved along with a sub-grid scale model to approximate

the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is

used for temporary discretization and a fourth-order compact scheme is used for spatial

discretization. Although such methods are widely used in the simulation of compressible

flows, the lack of an evolution equation for pressure or density presents particular difficulty

in incompressible flows. The pressure-velocity coupling must be established indirectly. It

is achieved, in this study, through a Poisson equation which is solved by a compact

scheme of the same order of accuracy. The numerical formulation is validated and the

dispersion and dissipation errors are documented by the solution of a wide range of

benchmark problems. Three-dimensional computations are performed for different inlet

conditions which model the naturally developing and forced jets. The experimentally

observed phenomenon of axis-switching is captured in the numerical simulation, and it is

confirmed through flow visualization that this is based on self-induction of the vorticity

field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial

correlations and Reynolds stresses are presented. Detailed budgets of the mean momentun

and Reynolds stresses are presented. Detailed budgets of the mean momentum and
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Reynolds stress equations are presented to aid in the turbulence modeling of complex jets.

Simulations of circular jets are used to quantify the effect of the non-uniform curvature of

the non-circular jets.
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Chapter 1

INTRODUCTION

1.1 Motivation

Turbulent jets are present in many physical processes and technological applications.

Turbulent jets can be found in combustors where the fuel and oxidizer are introduced as

co-flowing jets, where the efficiency of such a process is largely determined by the mixing

of the jets. Recently, jet aircraft noise has received much attention due to plans for a high-

speed civil transport. A critical issue for the project's success is reducing jet noise to

acceptable levels near populated areas. The belief is that acoustic patterns can be altered

by manipulating the large scale structures in turbulent jet flows through external forcing.

Non-circular jets can also be used to enhance the mixing of hot jet gases with the sur-

roundings in aerospace applications and thus avoid aircraft detection. In industrial applica-

tions, efficient mixing is required to mix pollution issuing from smokestacks with the

ambient surroundings to avoid its harmful effects.

In the laboratory, turbulent jets usually originate from a high pressure stagnation

chamber. Typically, the flow is then expanded through either a contoured nozzle or an ori-

fice plate which caps the stagnation chamber. The jet is then allowed to mix with the ambi-

ent surroundings and to develop in the streamwise direction.

Experiments have shown that three-dimensional (3-D) jets can be used to enhance

mixing and entrainment rates compared to nominally two-dimensional (2-D) jets. A



fundamentalunderstandingof the dynamics of complex, turbulent jets is required for their

prediction and control. The present study is concerned with understanding the spatial

evolution of incompressible 3-D jets in the near to medium field.

1.2 Survey of Previous Work - Experimental

Early experimental studies of three-dimensional, turbulent jets issuing from nozzles

and orifices (Sforza et al. 1966, Trentacoste and Sforza 1967, and Sfeir 1976) revealed a

phenomenon known as axis switching whereby the orientation of the jet major and minor

axes at the nozzle exit switch at a downstream location.

Sforza et al. (1966) and Trentacoste and Sforza (1967) studied the mean flow of 3-D

jets issuing from round, elliptical, and rectangular orifices of various aspect ratios. They

characterized the streamwise development of the mean velocity using three distinct

regions: (i) potential core, (ii) characteristic decay, and (iii) axisymmetric decay regions.

In the potential core region, the mixing layer separating the jet core from the ambient

surroundings at the orifice exit, has not spread to the jet centerline. As a result, the

streamwise velocity near the jet centerline is constant in this region. In the second region,

the velocity profiles in the plane containing the minor dimension of the orifice were found

to be similar whereas those in the major plane are non-similar. Because the decay of

centerline velocity was found to be dependent on orifice geometry, this region is referred

to as the characteristic decay region. A third region is characterized by an axisymmetric

decay of the centerline velocity which is proportional to the inverse of the streamwise

coordinate. Velocity profiles in both major and minor planes were found to be similar and

mostly independent of initial geometry. The results show that the length of the potential

core region is roughly 5 diameters for rectangular and elliptical geometries of aspect ratio,

AR = 10. The start of the axisymmetric decay region was roughly 50 diameters

2



downstream of the exit. Saddle-shaped streamwise velocity profiles (the maximum value

occurs away from the jet centerline) were observed in the minor axis plane in the

characteristic decay region. One axis switching was reported at 40 equivalent diameters

downstream of the exit for the rectangular orifice ofAR = 10.

Sfeir (1976) extended the earlier results by studying rectangular jets issuing from both

nozzles and orifices for aspect ratios of AR = 10, 20, and 30. Axis switching and saddle-

shaped velocity profiles were found for both orifice and nozzle jets. In general, jets from

orifices showed axis switching locations closer to the exit when compared to jets from

nozzles of equal aspect ratio. The saddle-shaped velocity profiles were more pronounced

for jets from orifices.

Krothapalli et al. (1981) performed experiments of rectangular jets from a moderate

aspect ratio nozzle, AR = 16.7 at Reynolds number of 12,000. In the characteristic or two-

dimensional region, they found self-similar profiles for the mean velocity, Reynolds shear

and normal stresses and a linear growth of the jet width in the minor axis plane. The shape

of the self-similar profiles was found to be insensitive to aspect ratio, for AR > 10. How-

ever, the location where the self-similar profiles begin was found to be directly influenced

by aspect ratio. Non-similar profiles were found in the major axis plane.

Tsuchiya et al. (1985) studied the effect of exit shape on the mean velocity field of

rectangular jets of aspect ratios, AR = 2 and 5. Smoothly contoured nozzles of various

lengths and sharp-edged orifices were utilized as exit shapes. Only the jets issuing from

orifice configurations produced saddle-shaped velocity profiles. All three configurations

produced at least one axis switching event with the orifice jet the closest to the jet exit. In

a later study, Tsuchiya et al. (1989) reported the saddle-shaped velocity profiles in nozzle

jets as well.

3



Ho and Gutmark (1987) studied jets issuing from elliptic nozzles with AR =2. Entrain-

ment rates for the elliptic jet were found to be several times larger than equivalent area

plane or axisymmetric jets. The increased entrainment rate was explained in terms of vor-

tex induction due to the non-uniform azimuthal curvature of the shear layer. Fluid was

found to be preferentially entrained at the minor axis plane as this portion of the vortex

moved outward, thus resulting in an axis switching. Three such events were observed

before the jet approached a circular shape.

Hussain and Husain (1989) extended the study of elliptic jets to include the effect of

initial condition of the boundary layer at the jet exit plane, such as azimuthal variation of

momentum thickness, turbulence level and effect of forcing. Axis switching was reported

for up to 100 equivalent diameters. Subsequent studies explained the vortex ring pairing

process (Husain and Hussain 1991) and the preferred mode coherent structure (Husain and

Hussain 1993).

Zaman (1996) used azimuthal and streamwise vorticity dynamics to explain the pres-

ence (or absence) of axis-switching in low aspect ratio, AR =3, rectangular jets. The study

also investigated the effect of adding vorticity generating tabs at the nozzle exit. It was

shown that contracting nozzles upstream of the jet exit plane could produce two pair of

counter-rotating streamwise vortices which eject fluid form the jet core to the ambient.

This sense of rotation did not promote axis-switching within the measurement domain.

Tabs placed on the short sides of the rectangular jet produced two pair of streamwise vor-

tices which pump fluid from the ambient to the jet core resulting in rapid axis switching.

Tabs placed on the long sides of the jet produced streamwise vortices of the same sense as

that from contracting nozzles, resulting in no axis-switching.
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Periodicforcingof thejet wasshownto spatiallyorganizetheazimuthalvortexstruc-

turesresultingin thefirst axis-switchinglocationbeingcloserto the jet exit whencom-

paredto thenaturallydevelopingjet. Thiswasusedto explainaxisswitchingin supersonic

screechingjets.Theauthorsnotethattheeffectsof azimuthalandstreamwisevorticity are

not mutuallyexclusiveandthat theeffectof streamwisevorticity pairscaneitherstopor

augmentaxis-switching.

1.3 Survey of Previous Work - Analytical

Analytical techniques have been used to study non-circular jets in the literature. These

methods fall roughly into two categories: (i) linear stability analysis, and (ii) vortex meth-

ods. In the former method, the governing equations are linearized about a base flow and

the perturbation quantity is assumed to be composed of normal modes. The linear stability

analysis of non-circular layers is more complex than nominally 2-D, plane shear layers

due to the inherent three-dimensionality of the base flow.

The stability of elliptic jets was initially studied by Crighton (1973) using a vortex

sheet model. Morris (1988) extended the analysis to finite thickness shear layers.

Koshigoe and coworkers (Koshigoe and Tubis 1986, 1987, Koshigoe et al. 1987) studied

the instability of circular and elliptical jets using a generalized shooting method. The stud-

ies showed that for elliptic jets, instabilities associated with the lower curvature portion of

the jet boundary layer are dominate inferring that large scale coherent structures would

form first in the minor axis plane.

Tam and Thies (1993) investigated instability waves of rectangular jets using a vortex

sheet model which approximates the region very close to the jet exit where the boundary

layer thickness is very small. The analysis identified four linearly independent families of

instability modes based on mode shape (symmetry considerations). The authors found that
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within eachfamily, thefirst andthird modesareassociatedwith jet comerinstability.The

secondmodeis associatedwith instability of the mixing layersof the centerof the fiat

sidesof thejet. Thesecondmodewasfoundto havethelargestspatialgrowthrateandis

thusexpectedto bethedominateinstabilityin rectangularjets.

Thedynamicsof isolatedinviscidelliptic vortexringswasstudiedby VietsandSforza

(1972)andDhanakandDeBemandis(1981)in aneffort to modelelliptic jets from noz-

zles.An analysisusingtheBiot-Savartlaw predictsinducedvelocity perpendicularto the

planecontainingthevortexcore.The magnitudeis proportionalto the local curvatureof

thevortextube,C, and the log of the inverse of the cross-sectional area, A; _- C_log(A-I),

where _ is the local bi-normal vector. Therefore, vortex tubes with high local curvature

and small cross-sectional areas will experience larger induced velocities. The analysis pre-

dicts that an initially planar elliptic ring will become distorted and switch its major and

minor axis. Axis switching in jet issuing from nozzles and orifices is considerably more

complex due to viscous and turbulent diffusion, shear, entrainment, and flow instabilities.

1.4 Survey of Previous Work - Computational

Previous computational studies of three-dimensional free jets are reviewed in this sec-

tion. In comparison to the available experimental studies, the number of computational

studies in the literature is sparse.

Early attempts at a numerical solution of 3-D jet flow utilized the Reynolds Averaged

Navier-Stokes (RANS) equations whereby the instantaneous Navier-Stokes equations are

first time-averaged and a turbulence model is used to close the system of equations (the

well-known closure problem). The RANS equations are then solved for the time-averaged

velocity and pressure. This procedure was followed by McGuirk and Rodi (1979) in their

study of 3-D free jets of aspect ratio, AR = 1, 5, 10, and 20. A k - e turbulence model was



usedto closethesystemof equations.Theflowwasassumedto beparabolicin thestream-

wisedirection,allowingtheuseof aspatialmarchingprocedurein thedownstreamdirec-

tion. While thisprocedurerequireslessCPUtimeandmemorythananelliptic solution,a

boundarylayeranalysisshowsthattheflow is onlyparabolicin thefarfield.Thecomputa-

tions wereunableto reproducethe experimentallyobservedaxis switchingand saddle-

shapedvelocity profiles.One axis switchingeventwaspredictedonly after an ad-hoc

specificationof thelateralvelocitycomponentsat the inflowof thecomputationaldomain

wasmade.Thesaddle-shapedvelocity profileswereneverpredicted.The authorsattrib-

uted this deficiencyto the k- _ turbulence model which is incapable of capturing the

effects of turbulence driven secondary motion.

Quinn and Militzer (1988) utilized a 3-D elliptic solution procedure to solve the

RANS equations for the turbulent square jet from a sharp-edged orifice. Unlike the

McGuirk and Rodi study, the velocity components at the inflow were specified from the

author's experimental results, which were also presented in the paper. The computations

were successful in predicting the decay of the centerline velocity in the medium to far

field. Results in the near field, x/D e < 5, were only qualitatively predicted, which the

authors attributed to a relatively coarse grid. The experimental results showed off-center-

line peaks of mean streamwise velocity in the near field, a faster spread rate when com-

pared to a circular jet of equivalent area, and positive mean static pressure in the very near

field at the jet centerline. Saddle-shaped profiles were also reported for the normal Rey-

nolds stress components. Detailed velocity profiles from the numerical solution were not

provided so that a comparison with the above mentioned trends is not possible.

Only in the last decade an unsteady numerical solution of the Navier-Stokes equations

for 3-D jet flows has been possible. In the direct numerical simulation (DNS) approach, all

scales of motion are resolved by the computational grid and no modeling is required. In
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the largeeddy simulation(LES) approach,the energycontaininglargescalesof motion

areresolved,while theunresolvedsmallscalesaremodeled.

GrinsteinandDeVore(1992)performedLES of spatially-developingsquarejets at

moderateReynoldsnumbersto studylargescalecoherentstructures.TheEulerequations

of motionweresolved(i.e.molecularviscosityisneglected)andanexplicit filteringof the

velocity wasusedasa minimal subgridmodel for the unresolvedscalesof motion.The

authorsexplainthejet dynamicsin termsof thedeformation,merging,andbreakdownof

initially planarsquarevortex rings.The deformationof the initially planar rings was

attributedto theinducedvelocitydueto azimuthalcurvaturepresentin thejet corners.The

relative inducedvelocity results in the comersof the squarering moving aheadand

towardsthejet centerline,while thefiat sidesremainbehindandmoveawayfrom thecen-

terline.Thedeformationresultsin aswitchingof theorientationof thesquarejet by 45° at

an axial locationdownstreamof thejet exit (x/D,- 0.8- 1.0). Flow visualizationof the

resultsrevealedpairsof counter-rotatingstreamwisehairpinvorticesin thehighstraincor-

nerregionbetweentwoadjacentvortexrings.Pairingof thevortexringswasaccompanied

by amalgamationof neighboringhairpinvorticeswhich doubledtheir streamwiseextent

andled to theeventualbreakdownof therings.Subsequently,theflow wascharacterized

by lessorganized,smallscalevortices,indicativeof fully turbulentflow.

Laterstudies(Grinstein1993)focusedontheLESof theverynearfield (x/De < 5) of a

2:1 aspect ratio rectangular jet. Thus, the experimentally observed axis switching at x/D e =

7 is not captured in the author's computation. Other studies focused on the vorticity

dynamics of isolated, rectangular vortex rings (Grinstein 1995) and the effects of com-

pressibility and initial condition (Grinstein 1996).



Miller et al. (1996)performedsimulationsof non-circularjetsatlow Reynoldsnumber

(ReD = 800) for a streamwise extent of x/D e = 9. The jets are forced at the inflow plane

with a single sinusoidal mode. Iso-surfaces of instantaneous vorticity magnitude show the

flow to be laminar - i.e. composed of smooth, symmetrical structures. Axis-switching is

predicted at x/D e = 3.1 for the 2:1 AR elliptical jet and x/D e = 6.3 for the 2:1 AR rectangu-

lar jet. Plots of centerline velocity reveal that the end of the potential core is not reached

within the computational domain (0 - 9 De).

1.5 Summary of Literature Survey

General conclusions from the experimental and computational studies on non-circular

jets in the literature are made in this section. Even though there are some conflicting opin-

ions, trends are consistently observed in many experiments.

Early studies showed that the decay of centerline velocity in rectangular jets was char-

acterized by three distinct regions: (i) potential core region, ending at roughly four to five

diameters, where the centerline velocity is constant, (ii) characteristic decay region, end-

ing at roughly 20 - 60 diameters (dependent on aspect ratio), where decay is dependent on

initial geometry and profiles in the minor axis plane only are similar, and (iii) the axisym-

metric region where the decay is proportional to the inverse of the streamwise coordinate

and is mostly independent of initial condition. There is evidence that for jet with AR > 10,

the axis switching location scales linearly with nozzle aspect ratio. The strong skewing of

streamlines near the jet exit in orifice jets results in axis switching closer to the jet exit in

comparison with equivalent nozzle jets. Pronounced saddle-shaped profiles for streamwise

mean and fluctuating velocity were also observed with orifice jets. Less pronounced sad-

dle-shaped profiles were observed for nozzle jets as well. Studies reveal that entrainment
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andmixing in non-circularjetscanbeseveraltimeslargerin comparisonwith equivalent

area,circularjets.This increaseoccurspreferentiallyin theminoraxisplane.

Linearstability analysisof rectangularjets indicatethat instabilitiesassociatedwith

thecenterof thefiat sidesof thejet havelargerspatialgrowthratescomparedwith comer

modesandarethusexpectedto bedominant.

Numericalstudiesat lowerReynoldsnumbers(Re D- 800) where the flow is laminar/

transitional, predict axis switching of non-circular jets forced with a single sinusoidal

mode. The effect of the spectral content of the forcing function has not been addressed in

such studies. Numerical simulation at higher Reynolds numbers are required for compari-

son with most jet experiments. Spatially-developing LES performed at higher Reynolds

numbers are limited to the potential core region and single sinusoidal mode forcing. Axis

switching for the rectangular or elliptic jet has not been simulated numerically at higher

Reynolds number.

1.6 Objectives of the Current Study

The specific objectives of the current study are given in this section which attempt to

address issues not covered in the literature. The objectives of the current study are enumer-

ated below.

(i) Develop a higher-order accurate numerical formulation for the simulation of spatially-

developing, unsteady, incompressible flows with improved resolution of high fre-

quency modes.

(ii) Show the effect of initial condition on jet dynamics by altering the spectral content of

the forcing function.
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(iii) Simulate the potential core and characteristic decay regions of non-circular jets at

higher Reynolds numbers (Re o - 105 ).

(iv) Demonstrate axis switching at higher Reynolds numbers and explore the axis switch-

ing mechanism.

(v) Compute budget terms of the mean momentum and Reynolds stress equations which

can be used in the turbulence modeling of complex jets.

A description of the organization of this study is now given. The governing equations

for incompressible flow are presented in Chap. 2 along with the necessary subgrid stress

model required for large eddy simulation. Boundary and initial conditions for the spa-

tially-developing jet are also presented. The temporal and spatial discretization of the gov-

erning equations are presented in Chap. 3, while the details of the solution of the Poisson

equation for pressure are presented in Chap. 4. The numerical formulation is validated in

Chap. 5 through the solution of a variety of benchmark problems. Results of the direct

numerical simulation of rectangular jets are presented in Chap. 6. In Chap. 7, results from

the large eddy simulation of rectangular, elliptic, and circular jets at higher Reynolds num-

ber are presented, Finally, a summary and conclusions from the study are provided in

Chap. 8.
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Chapter 2

MATHEMATICAL FORMULATION

The equations governing the conservation of mass and momentum of an isothermal,

incompressible, time-dependent fluid are developed in this section. The initial and bound-

ary conditions for the spatially-developing jet are also given.

2.1 Governing Equations

Figure 2.1 shows the computational domain for the jet simulations along with the

coordinate system and domain dimensions. The inflow boundary of the computational

domain is located at a finite distance downstream of a hypothetical nozzle which produces

a thin boundary layer separating the jet core from a stagnant freestream. It is assumed that

the streamwise velocity makes a smooth transition from the jet velocity at the core to the

ambient velocity and is thus modeled with the hyperbolic tangent function. The fluid then

leaves the computational domain through the outflow boundary located a distance, Lx,

downstream of the inflow boundary.

Freestream boundaries are located in the y and z coordinate directions where fluid is

entrained into the jet. Unless otherwise specified, the governing equations and reported

quantities will be normalized using the equivalent jet diameter at the inflow plane, De, as

the length scale and the jet core velocity at the inflow plane, Uo, as the velocity scale. The

equivalent diameter for the non-circular jet is defined as the diameter of a circle having the

same area at the inflow plane. Time will be normalized using the time scale, De/U o.

12



2.1.1 Continuity and Momentum Equations in Physical Space

The Navier-Stokes equations written in non-conservative form for an incompressible

fluid are given in this section. The continuity equation in a Cartesian coordinate system

written in indicial notation is given by:

(2.1)

where xj, uj, j = 1, 2, 3, represent the spatial coordinates and instantaneous velocities in the

physical Cartesian coordinate system.

The non-dimensionalized momentum equation in a Cartesian coordinate system is

given by:

c)ui _)ui _ bp 1 3ui
_)._._+ ui._xi _ + Reo bxj3x) (2.2)

where Reo, = (UoDe)/v is the flow Reynolds number, p is the non-dimensional pressure,

and v the kinematic viscosity of the fluid. The momentum equation has three scalar com-

ponents (i = 1,2,3).

The large eddy simulation (LES) approach is explored in this study, in which the large

scales of turbulent motion are resolved while the smallest scales are not computed directly

and are modeled in terms of the resolved scales. The filtering operation is defined by:

f(_) = [f(_)G(_-_)d_ (2.3)
fl

where the integration is extended over the computational domain, f_, and the general vari-

ablefis filtered to yield the spatially averaged value, ?. The variable G, denotes a spatial

filter which must satisfy the normalization constraint:
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G(._- _)d_ = 1 (2.4)
f_

It is convenient to define a grid filter that commutes with spatial and temporal differen-

tiation, such that:

m

af _ af
_t _t (2.5)

0f _ 0f

_x 3x (2.6)

Applying the grid filtering operation of Eq. (2.3) to the governing equations of motion,

Eqs. (2.1) and (2.2), the filtered equations of motion are obtained as

Ofii 3fii _ _ 1 _ Oqq

-_ + uj-_xj Ox i+ ReoOxjOx i _xj

(2.7)

(2.8)

where _ = p+ (1/3)Xkk is the pseudo pressure, "ca = u_uj-f,_r_j is the unresolved subgrid

scale stress due to the non-linearity of the convection terms, and qij = xij- ( 1/3)80Zkk is the

anisotropic part of the subgrid scale stress. The subgrid scale (SGS) models considered in

this study are defined in the next section.

2.1.2 Subgrid Scale (SGS) Models

The purely dissipative model of Smagorinsky (1963) is used in the current study. The

purpose of the SGS model is to account for the unresolved small scales. The Smagorinsky

model has been applied to the LES of many turbulent flows such as homogenous isotropic

flow, channel flow, and mixing layer flow. The Smagorinsky model has been one of the

most popular SGS models for LES, partly because it correctly models the global transfer

of energy from large to small scales. It provides an energy sink such that the large scale
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energyis drainedfrom theflow.However,it doesnotcorrectlymodellocaleffectssuchas

solidboundariesandnear-wallregions,localizedtransferof energyfrom smallscalesto

largescales,andlaminarandtransitionalflows.

Theanisotropicpartof the subgridstressis modeledin termsof the resolvedscales

usinganeddyviscositymodeldueto Smagorinsky(1963):

qo = -2v fiij (2.9)

where v, is the turbulent viscosity predicted by the SGS and Sii the strain rate tensor of the

resolved scales, given by

siJ= 2Lax+ax,)

The turbulent viscosity is given by

(2.10)

v, = ca21N,jl (2.11)

where C = 0.01,7,2 is the volume of the computational cell, and [S_j[= _ is the mag-

nitude of the resolved strain rate tensor.

2.1.3 Continuity and Momentum Equations in a Mapped Coordinate System

The governing equations given in Sec. 2.1.1 are mapped to an alternate coordinate sys-

tem through the use of the chain rule which introduces "metric" terms. This approach has

the potential for a more efficient use of grid points in resolving the thin boundary layer at

the domain inflow. The velocity components are defined using the Cartesian coordinate

system while the spatial gradients are defined in terms of the computational coordinate

system with uniform grid spacing. The gradient terms can then be discretized using high-

order compact finite difference schemes.
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Considerthe following generalmappingof Cartesiancoordinates(x_,x2, x3) to the

alternate coordinates (El, E2,e3) :

E,. = e,.(xl, x2, x3) (2.12)

First derivatives in the Cartesian coordinate system are expressed in terms of deriva-

tives in the alternate coordinate system using the chain rule:

a aE,. b

ax"-"_= axj_, m (2.13)

Upon expansion, Eq. (2.13) represents a sum of three products of metrics and deriva-

tives. The Laplacian operator in the alternate coordinate system is expressed as

a ae,.a :be, O]
3x_x, : _x-_xj_---_t_ J (2.14)

Equation (2.14) involves 18 terms upon expansion. It is understood that the term

a/ae,, operates on the term in parenthesis. Equations (2.13) and (2.14) are used to express

spatial gradients appearing in the continuity and momentum equations in terms of gradi-

ents in the alternate coordinate system. The continuity equation in the alternate coordinate

system is given by

aEmaUj

axjaE,. = 0 (2.15)

The momentum equation in the alternate coordinate system is given by

-- + Uj-----_ = + (2.16)

16



Thenon-lineartermspresentin themomentumequationprecludetheexactsolutionof

thegoverningequationswhichmustbesolvednumerically.Thenumericalapproximations

to thegoverningequationsaregivenin Chap.3.

Thecontinuityandmomentumequationsrepresentfour scalarequationsfor thefour

unknownvariables(threevelocity componentsin the Cartesiancoordinatesystemand

pressure).In thenextchapterit is shownthatthecontinuityequationis enforcedthrough

thesolutionof aPoissonequationfor pressure.ThePoissonequationis obtainedbytaking

thenumericaldivergenceof thediscretizedmomentumequation.

2.2Boundary Conditions

In order to define a well posed problem, the boundary and initial conditions for the jet

simulations are defined. The ellipticity in the spatial terms of the governing equations

requires that boundary conditions be defined at all boundaries. A diagram of the boundary

conditions is provided in Fig 2.1.

2.2.1 Streamwise Inlet Boundary Conditions

In the laboratory, jet flows are commonly generated by the use of a fan which forces

fluid along an enclosed nozzle. The jet leaves the exit plane of the nozzle where it interacts

with the ambient fluid. Prior to exit, the jet can be considered as a relatively uniform

freestream and a curved boundary layer at the walls of the nozzle. A short distance down-

stream of the nozzle exit, the boundary layer is smoothed so that the mean streamwise

velocity can be modeled using the hyperbolic tangent (tanh) function. The inflow bound-

ary of the computational domain is placed at a short distance downstream of the nozzle

exit which is not actually included in the jet simulations.
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(a) Mean Inlet Boundary Conditions

The mean or time-averaged streamwise velocity component, U, at the inflow boundary

is given by

U(O, y,z)= Uc + ( Un- UL)tanh__Oo)2Ir _ (2.17)

where Uc = ( UH + UD/2 is the convective velocity and Un and U L represent the velocities

of the jet core and ambient fluid, respectively. The quantity, r, represents the minimum

directed distance from the point, (0, y, z) to the line of constant convective velocity of the

boundary layer (see Fig. 2.2). Thus, the shape of the line of constant convective velocity

determines the jet geometry at the inflow plane. A super-elliptic equation was used to

specify all jet geometries in this study:

where a = AR*b and b represents the semi-major and minor dimensions of the constant

convective velocity contour, and n is the exponent in super-elliptic coordinate system. For

example, n = 2 defines an elliptic contour, while n >> 1 defines a rectangular contour with

slightly rounded comers. The momentum thickness of the boundary layer at the inflow

plane, 0 o is used to normalize the directed distance, r. If the point (0, y, z) is "outside" the

boundary layer contour as in Fig. 2.2, r is defined to be negative, while r is defined to be

positive if the point lies on the inside of the boundary layer contour. Equation (2.17) pro-

duces a constant thickness boundary layer if the momentum thickness, 0o, is constant at

all azimuthal positions along the boundary layer. Non constant thickness boundary layers

are generated by specifying the desired variation of 0o along the contour of the boundary

layer.
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Themeanstreamwisevelocity atthe inflow planeis specifiedby definingthejet core

andambientvelocities(Un and U L) and the momentum thickness of the shear layer, 0o in

(2.17). For this study Un = 1, U L = 0.01, and O,/Oo = 30, which models the experimental

jet profile a short distance (x/D e < 1) downstream from a contoured nozzle. For elliptic jets

the value of the exponent of the super elliptic coordinate system is n = 2, while for the

rectangular jet, n = 10 is used which slightly rounds the corners (see Fig. 7.9a). This also

models experimental jets where viscous diffusion is known to smooth the shear layer exit-

ing from rectangular nozzles at the sharp corners. The mean transverse velocity compo-

nents at the inflow plane are set to zero.

(b) Forced Inlet Boundary Conditions

In an effort to model jet experiments, a time dependent forcing function of low inten-

sity is added to the mean velocity components at the inflow boundary to promote unsteady

motion. At higher Reynolds numbers and computational lengths, it is speculated that small

round-off errors would grow to produce unsteady motion of the unstable shear layers, thus

obviating the need for forcing functions.

Two classes of perturbations are used in the current study; (i) sinusoidal perturbations

of a specified frequency and (ii) perturbations having an experimentally measured velocity

spectrum and transverse root mean square (rms) value, i.e.,

(i) Perturbations from linearized viscous stability theory

The first class of perturbations is derived from the solution of the Orr-Sommerfeld

equation (OSE) which governs the instability of the reference hyperbolic tangent profile to

spatially developing disturbances. The details of the solution of the OSE are presented in

Wilson and Demuren (1996) with the general form of the perturbation velocities being:
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_(y, t) = Real{ ¢'(y)ei°_t} , _:(y, t) = Real{-ia_(y)e i°_'} (2.19)

where ct, _(y), co represent the perturbation wavenumber, eigenfunction, and angular fre-

quency, respectively. The variables, y and t represent the transverse coordinate and time,

respectively, while i = ,JL-i. The stability equations are solved for the plane mixing layer

and the resulting eigenfunctions are adapted to non-circular jets by replacing the trans-

verse coordinate, y, in Eq. (2.19) with the minimum directed distance, r.

(ii) Random perturbations from experimental data

Perturbations which have a broad spectrum are generated based on experimental data

for a plane mixing layer. The velocity power spectra and root-mean-square (rms) perturba-

tion levels were taken from the experiment of Spencer and Jones (1971). Because phase

information is not included in the power spectra, a random phase relationship for the

modes comprising the spectra was assumed. The velocity perturbations are found by per-

forming a Fourier transform of the complex Fourier coefficients, ai(Y, f), defined by:

m

I-Fi(Y, f)_]T-1
ai(Y' f) = L" 4_-2 .](cos'y(y) + isin_(y)) (2.20)

where Fi(y, f), _2, T, and _,(y) represent the normalized spectrum function, the rms level

of the ith velocity component, time interval of the simulation, and the randomly generated

phase angle, respectively. The velocity perturbations for the mixing layer represented by

Eq. (2.20) are adapted to non-circular jets by replacing the transverse coordinate, y, with

the minimum directed distance, r. The complete details of the derivation of time-depen-

dent inlet boundary conditions based on a experimentally measured spectra are given in

Wilson (1993).
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The random inlet boundary conditions are the spatial analog to the random perturba-

tions generated for initial conditions in temporal simulations. Figure 7.1 a shows represen-

tative time traces and power spectra for the broad mode forcing function.

It is widely accepted that the proper boundary condition for the Poisson equation for

pressure (derived in the next chapter) is the Neumann boundary condition (Gresho and

Sani 1987). This condition is derived by applying the normal component of the momen-

tum equation at the boundary. Applying the i = 1 component of Eq. 2.2 and solving for the

pressure gradient term results in Neumann condition for pressure at the inflow:

I___Px.lo I_ auj au I 1 32u_ ] (2.21)

where the subscript "o" is used to denote the inflow boundary plane. The first term on the

RHS of Eq. 2.21 is known from the inflow velocity boundary conditions, and the second

and third terms are also known before the solution of the Poisson equation as will be

shown in the next chapter.

2.2.2 Streamwise Outflow Boundary Condition

A characteristic analysis of the governing elliptic differential equations reveals no real

characteristic curves along which disturbances travel. A disturbance is instead propagated

in all directions at once. As a result, the solution of elliptic partial differential equations

requires the specification of boundary conditions along the entire boundary. Boundary

conditions are well defined at the inflow plane and can be reasonably approximated at the

freestream boundary which is placed a large distance from the jet dynamics at the center-

line. However, the conditions at the outflow boundary are not known a prior and must be
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specified such that those errors do not adversely affect the accuracy in the interior of the

domain.

Sources of ellipticity in the governing equations that link errors at the boundary to the

interior can be traced to pressure and viscous terms. In addition, it is possible to convect

errors from the outflow to the interior if flow reversal occurs. The source term for the Pois-

son equation for pressure also links outflow errors to the interior.

A technique which breaks the link between errors at the outflow boundary and the

interior solution is the buffer domain technique proposed by Streett and Macaraeg (1990).

This technique is adapted to the current jet simulations whereby the ellipticity of the gov-

erning equations is eliminated in a small region (called the buffer layer) which is appended

to the solution domain at the outflow. Practically, this is achieved by a factor which turns

off those elliptic terms in the buffer layer. The resulting momentum equation becomes:

"_ +[fblUj+(l--fbt)Ujl_x j OP + +
(2.22)

where fbl is the buffer layer factor which gradually changes from unity in the solution

domain to zero in the buffer layer through the following function:

fbt(Xl) = _{ 1 -- tanh[ct, t(x _ -xl/2)]} (2.23)

where cbt = ln[fcr/(l -fc,)]/(2(Xcr-xl/2)) is a constant which controls the rate of transi-

tion between the solution and buffer domains while Xl: 2 controls the transition location.

For the simulations presented in Chaps. 6 and 7, the following buffer layer parameters are

used, fc r = 0.99999, Xcr = 0.99Lx, and Xl: 2 = 0.9L x. This results in a computational domain

length of ten diameters and a buffer domain length of two diameters. The convection
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velocity in the buffer domain, Uj, is computed from the time-averaged velocity as the com-

putation progresses. In addition, the source term for the Poisson equation for pressure is

gradually forced to zero in the buffer domain through the same function. Zero gradient

boundary conditions for all velocity components and the pressure are then applied at the

outflow.

2.2.3 Freestream Boundary Conditions

The freestream boundary of the jet simulations is located at a large distance from the

jet centerline such that the developing structures do not cross this far-field boundary. This

permits the freestream boundary to be modeled as a zero-traction boundary where pres-

sure is set to zero and the gradients of the instantaneous velocity field are set to zero in the

transverse and lateral directions:

p=O

3u/ _ 0
bn

where n denotes the direction normal to the freestream boundary.

(2.24)

(2.25)

2.3 Initial Conditions

A spatial simulation of turbulent jet flow is performed in this study where a fixed

region of the flow is computed and disturbances grow in the streamwise direction. This

can be contrasted with a temporal simulation where a small region of the flow is followed

in time and the domain moves in the streamwise direction.

As a result of the spatial reference frame, initial conditions are of minor importance

because they are quickly convected out of the domain and the dynamics of the jet flow are

determined by the forcing functions applied at the inflow plane. Simulations are started on
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coarsegridswith thevelocitiesspecifiedat the inflow planeusedto initializethevelocity

field in the interiorat t = 0. After several flow through times (the time required for a fluid

particle to convect from the inflow to the outflow plane at the convective velocity, Uc) the

initial conditions are "washed" from the domain. Simulations on finer grids are started

from results on coarser grids by prolongating the results using a standard, second-order

accurate interpolation formula.
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V

Freestream boundaries

Outflow Boundary

Inflow Bound

Ly

L z

LX

Fig 2.1 Computational domain and coordinate system for the spatially-develop-

ing jet (iso-surface of vorticity magnitude from LES of rectangular jet

shown).

Y

_ O,zy, z)

Uc = (UH+Uz)/2

Fig 2.2 Diagram showing the minimum directed distance, r, from the point

(0, y, z) to the contour of constant convective velocity, U C, at the inflow.
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Chapter 3

NUMERICAL FORMULATION

The numerical approximations of the governing equations are described in this chap-

ter. The temporal approximation to the governing equations is given in this section, while

the spatial approximations are given in the next section.

3.1 Temporal Discretization

The time advancement scheme used to march the momentum equations in time should

possess several qualities; low dispersion and dissipation errors over a wide range of step

sizes, low-storage requirements, and a relatively large stability envelope. The family of

low-storage, Runge-Kutta schemes proposed by Williamson (1980) possesses these desir-

able qualities. The scheme is low-storage in the sense that only two storage locations (one

for the time derivative and one for the variable itself) are required for time advancement.

In comparison, a third-order fully implicit scheme requires four storage locations. For

simplicity, the numerical approximations for the governing equations are given in the Car-

tesian coordinate system with uniform grid spacing. Extension of the formulation to curvi-

linear grids is accomplished by using the chain rule to replace the derivatives in physical

space with derivatives in the uniform computational space and is straightforward.

The additional metric terms are discretized using the same higher-order compact

schemes. The momentum equation is advanced from time level, N, to N+I, using Q
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substages. The temporal derivative in the momentum equation is discretized using a third-

or fourth-order explicit Runge-Kutta scheme:

bf+l M

_ui-ui -ui - HiM OPM (3.1)
Ot bM At _x i

where b M is a constant of the Runge-Kutta scheme, u_ represents the ith velocity compo-

nent at the Mth substage (M = 0 is the Nth time level, M=Q is the N+I time level). The

term, H,M, denotes the sum of convection and diffusion terms:

The terms on the right hand side (RHS) of Eq. (3.1) are assumed known from the previous

sub-stage or from the initial conditions at t = 0. The calculation of the pressure is accom-

plished by solving a Poisson equation at each sub-stage such that the continuity is

enforced. Since the pressure, pM, is calculated before the advancement of Eq. (3.1), u_ +1,

can be calculated explicitly using Eq. (3.1).

The low-storage requirement is accomplished by continuously overwriting the storage

location for the time derivatives and unknown variables at each sub-stage:

^

H? _-- aMHiM-I (3.3)

M ^M
M+1 uM,+ b zXtHi (3.4)U i (.---

where f/_ = MH i -[_pM/_xi] and the notation <-- is used to indicate that the storage

locations, /-/_- _ M M÷1, ui are overwritten by, kff, u; , respectively. Tables 3.1 and 3.2 show

the constants, a M and b M (to 8 significant figures) for the low-storage, third- and fourth-

order schemes, respectively.
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Table 3.1 Coefficients of third-order Runge-Kutta schemes

from Lowery and Reynolds (1986)

M •

1 0

b M

0.500

2 -0.68301270 0.91068360

3 -1.33333333 0.36602540

Table 3.2 Coefficients of fourth-order Runge-Kutta schemes

from Carpenter and Kennedy (1994) (defined there as solution 3)

M a M b M

I 0 0.14965902

2 -0.41789047 0.37921031

3 -1.19215169 0.82295502

4 -1.69778469 0.69945045

5 -1.51418344 O.15305724

The stability characteristics of the Runge-Kutta schemes can be analyzed by consider-

ing the model equation:

/)¢ - /_-/(¢, t) (3.5)

where ¢ is the generic unknown to be advanced in time and f/ is the time derivative which

contains the spatial terms of the governing equation. Equation (3.5) is transformed from

physical space to wavenumber space by decomposing ¢ into Fourier modes:

= _(t)e ikx (3.6)

where ¢(t) is the Fourier coefficient of ¢, i = ,,f_, and k is the wavenumber. Substituting

Eq. (3.6) into Eq. (3.5) yields:
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- _._ (3.7)

wherek (acomplexnumber)is theFouriersymbolof thespatialoperatorf/. The Runge-

Kutta scheme is used to expand the term on the LHS of Eq. (3.7) which gives an amplifica-

tion factor, G = _w+ l/_pN for the third-order scheme:

G =1 + (3.At)+ _(_At)2 + _(XA/) 3 (3.8)

It can be shown that all three-stage, third-order Runge-Kutta schemes have the same

amplification factor given in Eq. (3.8). Solving Eq. (3.7) analytically in time gives the

exact amplification factor, Ge:

_.At

G e = e (3.9)

Comparing Eqs. (3.8) and (3.9), the three-stage, third-order Runge-Kutta scheme is a

polynomial approximation to the exact solution to third-order. Similarly, the five-stage,

fourth-order Runge-Kutta scheme has amplification factor:

G=I+ (_,At)+ _(_,At)2 + _(_,At)3 + l(_,At)4 + _(kAt) 5 (3.10)

The stability of the Runge-Kutta schemes is shown graphically in Fig. 3.1 by plotting

the IGI = 1 contour of Eq. (3.8) for the three-stage, third-order scheme and Eq. (3.10) for

the five-stage, fourth-order scheme. A selection of LAt in the interior of,the closed curve

yields IGI < 1, i.e. the scheme is stable. Outside the closed curve, IGI > 1 and the scheme is

unstable. If the Fourier symbol of the spatial operator, Z,, is purely imaginary (for example

the 1-D convection equation) an inspection of Fig. 3.1 reveals that the region,

-L/< _.At < L/, is stable. If Z. is purely real (for example the 1-D diffusion equation) the

region, -L R< _.At < 0, is stable. The stability limits for these two extreme cases are given in
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Table3.3for the third- andfourth-orderRunge-Kuttaschemes.The fourth-orderscheme

allowstime stepsroughly twice that of thethird-orderscheme.

A temporal stability analysisof the 3-D convection-diffusionequation is used to

modelthetemporalstability of the3-DNavier-Stokesequationsandis postponeduntil the

numericalapproximationsto thespatialderivativesaredefined.

Table 3.3 Stability limits of Runge-Kutta schemes

for purely imaginary (LI) or real (LR) spatial operators

Spatial third-order, fourth-order,

Operator three stage five stage

Imag, L! 1.73 3.34

Real, L R 2.51 4.65

3.2 Spatial Discretization

The numerical approximations to the spatial derivatives appearing in the semi-discrete

momentum equations, Eq. (3.1), are given in this section. Standard second-order finite dif-

ference approximations to first derivative suffer from large dispersion errors. Spectral

methods offer exact differentiation for resolved modes but suffer from high cost and low

flexibility in that simple domains and boundary conditions are required for their imple-

mentation. In this study, high-order compact finite differences are used to approximate

spatial derivatives because of their excellent combination of high-accuracy, flexibility, and

relatively low cost.

3.2.1 Numerical Approximation of First Derivative Terms

The first derivative terms appearing in the governing equations are approximated using

fourth- and sixth-order compact finite difference schemes proposed by Lele (1992). High
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accuracy is achieved with relatively small computational stencil sizes by treating the

derivative terms implicitly:

o, a ( b )
0_)'i_ I .t._)'i+a_)i+l = _ _i+l--_i_l)+-_x(_i+2--_i_2 (3.11)

where 6x = Lx/(N x- 1), g x is the number of grid points, O'i represents the first derivative

of the generic variable _i with respect to x, and or, a, b are the coefficients of the compact

scheme which determine the accuracy. Similar expressions are used for derivatives with

respect to the y and z directions. For the fourth-order scheme: a = 1/4, a = 3/2, and

b = 0, and for the sixth-order scheme: a = 1/3, a = 14/9, and b = 1/9. The LHS of Eq.

(3.11) contains the unknown derivatives at grid points i and i+ 1 while the RHS contains

the known functional values ¢i at the grid points i + 1 and i + 2.

A comparison of explicit central difference and implicit compact approximations to

the first derivative is given in Table 3.4. It can be seen that the implicit treatment of the

derivative results in a smaller or more "compact" stencil for a given order. Also, the lead-

ing truncation error term for the compact scheme is reduced by 1/4 for the fourth-order

scheme and 1/9 for the sixth-order scheme compared to explicit central difference

schemes of the same order.

Table 3.4 Comparison of explicit central difference

and implicit compact approximations to the first derivative

Scheme Truncation error Stencil Size

fourth-order central (-4/5!)(Axj)4_ C_) 5

fourth-ordercompact (-1/5!)(Axj)4_b (5) 3

sixth-order central (-36/7! )( Ax j) 6tP__ 7

sixth-ordercompact (-4/7!)(Axj)6dP (7) 5

Writing Eq. (3.11) at all grid points results in a tridiagonal system of algebraic equa-

tions and that is solved efficiently by factoring the LHS into a lower/upper (LU) system
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once at the beginning of the simulation. The LU factors are stored and then used to solve

Eq. (3.11) for the unknown derivatives.

The resolution properties,of the numerical approximation to the first derivative are

analyzed by transforming the 1-D convection equation from physical to wavenumber

space. In physical space, the 1-D convection equation is given by:

where lul

modes as in Eq. (3.6) and evaluating _@_xx analytically gives:

aga

lul_ = 0 (3.12)b-7+

is the wave speed which is assumed to be constant. Decomposing @ into Fourier

_---_= -ilulkgo
Ot

While evaluating the first derivative numerically gives:

(3.13)

= -ilulk*_ (3.14)

where k* is the numerical wavenumber. For explicit finite difference schemes, ct = 0, and

the numerical wavenumber is given by:

N

-i ilk_
k* = _x £ ate (3.15)

l = -N

while for the tridiagonal compact scheme, the numerical wavenumber is given by:

k" 1[ asin(kAx) + _c°s(2kAx)]

j
(3.16)
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Note that in general the numerical wavenumber, k*, is complex while the exact wave-

number, k, is real. For the numerical approximation to yield an exact solution, the follow-

ing two conditions must be met:

Real(k') = k (3.17)

Imag(k*) = 0 (3.18)

It is easy to show that deviations from Eq. (3.17) indicate dispersion errors due to odd

derivative terms appearing in the truncation error. Deviations from Eq. (3.18) indicate dis-

sipation errors due to even derivative terms appearing in the truncation error. The real and

imaginary parts of Eq. (3.16) are plotted separately in Fig. 3.2 for the fourth- and sixth-

order compact schemes. In addition, some popular explicit numerical approximations to

the first derivative are plotted for comparison; the standard second-order central difference

scheme and a third-order upwind biased scheme.

From Fig. 3.2a, it can be seen that all four approximations do a reasonable job of

approximating the exact wavenumber (i.e. very low dispersion errors) at very low wave-

numbers (k6x _ 0 ) and that all four approximations do a poor job at very high wavenum-

bers (k_ _ n). For intermediate wavenumbers, the fourth- and sixth-order compact

schemes provide a much better approximation to the exact wavenumber over a greater

range of wavenumbers than the explicit schemes. The second-order central difference

scheme yields a poor approximation to the exact wavenumber for all but the very lowest

wavenumbers (k6x < 0.5 ). From Fig. 3.2b it can be seen that the compact and second-order

central difference schemes contain no dissipation errors. The third-order upwind scheme

adds numerical dissipation errors which are largest at high wavenumbers. Spectral meth-

ods yield exact differentiation for all modes which can be resolved on the specified grid

and thus correspond to the exact relationship for kAx in Fig. 3.2.
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Table 3.5 lists some quantitative measures of resolution for the five schemes. The

wavenumber, k_, defines the region of acceptable accuracy, i.e. for 0 < k < k_,

Ik'ax- axl <0.01. Modes with k > k_, are not accurately resolved. The quantity, kin,x,

defines the maximum value for the modified wavenumber, i.e. for k < k_,ax, the slope of the

curve is zero. Also listed is the number of spatial grids points per wavelength,

PPW = 2n/(k_Ax), to accurately resolve a given mode. From the estimate of PPW, roughly

five times as many points are required for the second-order central difference scheme to

achieve the same accuracy as the compact schemes.

Table 3.5 Resolution measures of various

numerical approximations to the first derivative

Spatial Scheme

second-order central

third-order upwind

fourth-order compact

sixth-order compact

spectral

0.22

0.44

1.11

1.55

km_xAx

1.00

1.27

1.73

2.00

Points per

wavelength

28.6

14.3

5.6

4.1

For non-periodic boundaries, one-sided finite difference expressions are required to

close the system of equations at the boundary points; i = 1 and i = N for the fourth-order

scheme and i = 1, 2 and i = N-l, N for the sixth-order scheme. A third-order compact

boundary scheme is used at i = 1 and i = N with the fourth-order interior scheme:

3

#'1 + %s_'2 = AxZ._ bs, ,
i=1

(3.19)

where abs = 2 and abs _ = -5/2, abs2 = 2, abs 3 -- 1/2 are the coefficients of the third-order

boundary scheme. A similar equation is used at i = N.
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For the sixth-order scheme, a boundary and near-boundary scheme are required for

closure since the interior stencil is pentadiagonal. A fifth-order explicit boundary scheme

is used at points, i =I and i = N:

8

1 'K" a 0*'1 = _A., b,, i
i=1

(3.20)

with coefficients:

abs t = -296/105 abs s = --215/12

abs 2 = 415/48 abs 6 = 791/80

abs 3 = --125/8 abs 7 = --25/8

abs ' = 985/48 abs _ = 145/336

A different fifth-order explicit near boundary scheme is used at points, i = 2 and i = N-l:

with coefficients:

8
1

q;'2= _txZ a,,b,_i
i=1

(3.21)

a,,b, = --3/16 a,,b5 = 115/144

a,,b_ = --211/180 anb 6 = -1/3

anb 3 = 109/48 a,,b7 = 23/240

a,,b, = -35/24 a,,b8 = -1/72

Similar equations for the boundary and near boundary schemes are used at points i = N

and i = N-1.
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3.2.2 Numerical Approximation of the Second Derivative

The second derivative terms present in the viscous terms of the momentum equation

and the Laplacian operator of the Poisson equation for pressure are approximated using

fourth- and sixth-order compact finite differences. Again, higher accuracy is achieved by

treating the derivative implicitly:

c_¢"i-1 +_"i+a_"i+l - (_)2(¢i÷_-2_i + ¢i-1)

b

+ 4(Ax_(qbi+ 2-2_i + _bi- 2) (3.22)

where _"i represents the second derivative of the generic variable _i with respect to x, and

ct, a, b are the coefficients of the compact scheme. For the fourth-order scheme:

tx = 1/10, a = 6/5, and b = 0, and for the sixth-order scheme: ct = 2/11, a = 12/11, and

b = 3/11. The tridiagonal system of algebraic equations for the second derivatives are

solved for in the same manner as the first derivatives. A comparison of explicit central dif-

ference and implicit compact approximations to the second derivative is given in Table

3.6. As with the first derivative, the implicit treatment of the second derivative results in a

smaller stencil size for a given order. The leading truncation error term for the compact

formulation is reduced by 1/2 for the fourth-order scheme and I/4 for the sixth-order

scheme compared to explicit central difference schemes of the same order.

Table 3.6 Comparison of explicit central difference

and implicit compact approximations of the second derivative

Scheme Truncation error Stencil Size

fourth-ordercentral (-8 / 6! ) (Ax) )4_c_ 5

fourth-ordercompact (-3.6/6! ) ( Ax./)4t_ (6) 3

sixth-order cd (--72/8! ) (Ax))°_c 5) 7

sixth-ordercompact ( - (-16.7/8!))(Ax./)6_ (8) 5
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For non-periodic boundaries, one-sided finite differences are required to close the sys-

tem of equations. At i = 1 and i = N, a third-order compact boundary scheme is used:

4

,, _ 1 X"a ¢
_)"1 + O{bs_) 2 - .7.2 Z_ bsl i

(3.23)

where %s = 11 and abs ' "- 13, abs2 = -27, abs ' -" 15, and abs' -- - 1 are the coefficients of the

third-order boundary scheme. For the sixth-order scheme, a near boundary scheme is

required at i = 2 and i = N-1. The fourth-order interior scheme is used at these points since

only a three-point stencil is needed.

A similar analysis of the 1-D diffusion equation is used to investigate the resolution

qualities of the proposed compact approximation to the second derivative. In physical

space, the 1-D diffusion equation is written as:

2

3_ _ 1 3 _ (3.24)
Ot ReOx 2

where the term l/Re represents the diffusion coefficient. Equation (3.24) is transferred to
2

wavenumber space by decomposing the solution into Fourier modes. If a______is evaluated
ax 2

analytically, Eq. (3.24) becomes:

a_ l k2_at- R-_ (3.25)

Evaluating the second derivative numerically gives:

a_ - ---2--(k*)2_ (3.26)
3t Re

where k* is the numerical wavenumber. For explicit finite difference schemes (a = 0 ), the

numerical wavenumber is given by:
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= -1 _" a e ilk_tx

(k')2 (_kX)21=_N l

(3.27)

The tridiagonal compact scheme represented by Eq. (3.22) yields a numerical wavenum-

ber:

_ 1 [2a[1-cos(kAx)]+_[1-cos(2kAx)]-(k') 2

(_)2 L 1 + 2acos(kAx)
(3.28)

Since explicit central and implicit compact difference schemes for the second deriva-

tive have symmetric stencils (a t = a__), the numerical wavenumber is always a real num-

ber. As a result, there are no dispersion errors in the approximation of the second

derivative. Only dissipation errors exist. The dissipation errors for the explicit second-

order central difference, and fourth- and sixth-order compact schemes are shown in Fig.

3.3 by plotting the numerical wavenumber in Eqs. (3.27) and (3.28). It can be seen that the

numerical wavenumber for the compact scheme more closely approximates the exact

wavenumber over a wider range of wavenumbers. Quantitative measures of resolution

power for the various schemes are given in Table 3.7. It can be seen from the estimate of

the PPW that roughly twice as many points are required for the explicit second-order cen-

tral difference to produce the same accuracy as the compact schemes.

Table 3.7 Resolution measures of various numerical approximations
to the second derivative

Spatial Scheme (k_Lx) (k_.x_x)2 Points per
wavelength

second-order central 0.57 4.00 11.0

fourth-order compact I. 14 6.00 5.5

sixth-order compact 1.52 6.86 4.1

2
spectral _ _ 2
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Upon discretizing the semi-discrete momentum equation using the compact schemes

for spatial derivatives outlined above:

_t+l = uM+bMAt[Hi 5xpM] (3.29)
Ui -- i

where:

1 5 uM
H_t =-uj_)xl ut_ + Re xxj i

De

3.2.3 Stability of Runge-Kutta Schemes for the 3-D Convection-Diffusion Equation

A stability analysis of the 3-D convection-diffusion equation with periodic boundaries

and uniform grid spacing using the Runge-Kutta scheme is given in this section. The

results of this analysis are used to model the temporal stability of the 3-D Navier-Stokes

equations and to select a time step size for the simulations presented in this study. The

analysis neglects the effects of non-linearity of the convection terms, non-periodic bound-

aries, the continuity equation, and grid stretching and therefore cannot predict exact stabil-

ity limits. The approach is to analyze the convection and diffusion equations separately

and then to combine the two results to determine stability limits for the convection-diffu-

sion equation.

Returning to the 1-D convection equation and comparing Eqs. (3.7) and (3.14), it can

be is given by, _. = -ilulk" Recallbe seen that the Fourier symbol of the spatial operator, _xx'

that k* is the numerical approximation to the exact wavenumber. The most unstable mode

in the temporal integration corresponds to the maximum value of LAt over all wavenum-

bers:

( _,At )m._ = -ilul kmaxAt = -i C (3.30)
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where C = k,,,xAx is determined by the numerical approximation to the first derivative and

is given in Table 3.5 for the various schemes. From the results of the stability analysis of

the model equation presented in Sec. 3.1, the stability limits for the 1-D convection equa-
,j

tion are given by:

< CFlul_l
-1 _L-_---j_._ < 1 (3.31)

where max i denotes the maximum quantity over all grid points. For the 3-D convection

equation, Eq. (3.31) becomes:

where Ivl

<CAtFl.I Ivl+I I l
-I -_-t [._ + < I (3.32)Ay AzJ,.a_j,

and Iwlare the convection velocities in the y and z directions, respectively.

Considering the 1-D diffusion equation, the Fourier symbol of the spatial operator is

found by comparing Eqs. (3.7) and (3.26). The most unstable mode is given by:

1 * 2 D At
(_.At)max - l_e(kmax) At =- IRES] (3.33)

where D (k_xAx) 2 "= is determined by the numerical approximation to the second deriva-

tive and is given in Table 3.7. The stability limit for the 1-D diffusion equation is given by:

D At

For the 3-D diffusion equation, Eq. (3.34), becomes:

(3.34)

DAtF 1 1 +---ml ] <I (3.35)L_k-_)2 + (Ay)2 (&z)2 ,,,,,0,

The stability limits of the diffusion and convection equation are combined to give the

stability limits of the convection-diffusion equation. In this case, _.At, possesses both real
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and imaginary parts. One approach to predicting the stability of the 3-D convection-diffu-

sion equation, once the computational grid is specified, is to substitute the expressions for

Z,At into Eq. (3.8) or Eq. (3.10) and solve the polynomial equation for at at all grid points.

Selecting the time step as the minimum computed over all the grid points ensures that

Ial < 1 for all grid points. However, the solution of such a polynomial equation involves

multiple roots (dependent on the order of the polynomial) and is thus difficult to automate.

The present approach is to replace the actual contour, IGI = 1, with an ellipse having

semi-major and -minor axis lengths of L R and L t, respectively. The region inside the

ellipse is considered to be stable. The stability criterion from this approach is given by:

1
At < (3.36)

• 2 I/2

[ Limconv 2 + Ltmdi// ]raaxo_

where:

= ,v,
Lirn co._ LILA x + _y +

Limdif' = L_e_--"_ 2 + " "_ +(Ay)l(-_)2]

For free shear flows at moderate to high Reynolds numbers, one expects the stability to

be governed by the inviscid terms. At lower Reynolds number and/or flows with solid

boundaries where extremely fine grid spacing must be used, the stability requirements

could be governed by the viscous terms. An analysis of grids and Reynolds numbers used

in this study indicates that stability is indeed governed by the inviscid limit and thus an

explicit time differencing scheme such as the third- or fourth-order Runge-Kutta scheme

allows reasonably large time steps to be taken.
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Sincetherearea numberof simplifying assumptionsmadein extendingthe stability

resultsto the Navier-Stokesequations,the time stepusedin the simulationsis reduced

from thatpredictedby Eq. (3.36):

,at< sf
• 2 1/2 (3.37)

[Limconv 2 + Llmdiyf ]m,_ok

where sfis a safety factor, 0 < sf< 1. For the simulations in this study, sf= 0.5 was used.

In using Eq. (3.36) to estimate the time step requirements for stability, the velocity

components of the flow field are required to evaluate the frozen convection coefficients,

lul, Ivl, Iwl. In the absence of a representative flow field (such as at the beginning of a simu-

lation) conservative estimates are used. For non-uniform grids, the local grid spacing

(Axij _, Ayijk, 6z,i k ) is used and it is assumed that the effect of grid stretching on the temporal

stability is negligible.

3.3 Enforcement of the Continuity Equation and Poisson Equation for Pressure

An examination of the governing equations reveals four scalar equations (continuity

and three scalar components of the momentum equation) in terms of four unknowns (three

velocity components and pressure). Time derivatives for the velocity components in the

momentum equation are used to march those equations in time. However, no such time

derivative exists for pressure, while the continuity equation appears to be an additional

constraint on the velocity field. The current approach overcomes this problem by taking

the numerical divergence of the discretized momentum equation and substituting for the

discretized continuity equation. This results in a Poisson equation for pressure which

ensures that the velocity field is divergence free at the M+I sub-stage.
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Applying thedivergenceoperator_ix,to thediscretizedmomentumequationgives:

1 {Sx,(uM+,_uM)} = _xHM__xf)xpM (3.38)
bM 61

The term, 5xU_ ÷_, represents the discretized continuity equation at the M + 1 sub-stage

and is set to zero to enforce the continuity equation. The term, 5_u_, represents the conti-

nuity equation at the previous sub-stage M. In practice, this term is retained in the solution

of the Poisson equation to "kill off" any accumulating divergence of the velocity field at

the previous sub-stage. The term, _xH_, is the source term of the Poisson equation and

represents gradients of the convection and diffusion terms which are known from the pre-

vious sub-stage. The term, _Sxfix,pM, represents the discretized Laplacian operator of the

pressure. Solving for the Laplacian of the pressure in Eq. (3.38) gives:

L.
V2p M

L-- b MAtJ

(3.39)

The solution details of the Poisson equation for pressure are given in Chap. 4.
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Chapter 4

SOLUTION OF THE POISSON EQUATION FOR PRESSURE

A significant amount of the total computational time required for the solution of the

incompressible Navier-Stokes equations (as much as half) is devoted to the enforcement of

the continuity equation/solution of pressure. This stems from the fact that evolution equa-

tions exist for the velocity components (i.e. the momentum equations) while none exist for

the pressure. Instead, an elliptic equation must be solved for the pressure which involves

the solution of a system of equations and is expensive. Solutions methods for elliptic equa-

tions generally fall into two categories - direct or iterative. Direct methods usually involve

some form of Gaussian elimination where the coefficient matrix is first factored into an

upper and lower matrix and then the solution is computed using back substitution. The

operation count and memory requirements for this procedure can be prohibitively large for

the solution of systems involving a large number of unknowns ( - 10 6 in typical 3-D

problems). The alternative to a direct solution is an iterative procedure where an initial

approximation to the solution is used to yield an improved solution. This process is

repeated until the solution is converged within a pre-specified convergence criterion. The

operation count and memory requirements of most iterative methods are less than that of

Gaussian elimination. Therefore, the iterative solution procedure is used in this study to

solve the Poisson equation for pressure. The details of this procedure are outlined in this

chapter. The performance of the computer code using uniform and curvilinear grids is also

documented and compared with published computational rates of similar codes.
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4.1 Discretized Laplacian Operator

The discrete Poisson equation for pressure which was derived in Sec. 3.3 is given by:

+ -i (4.1)
_Sx/Sxip M = _3_, Hff bM At

The LHS of Eq. (4.1) represents a discretized Laplacian operator composed of two

applications of the first derivative operator, 8x. It is well known that using two first deriva-

tive operators to represent the Laplacian operator on non-staggered grids can lead to an

"odd-even" decoupling of the solution. Indeed, with standard second-order central differ-

encing for the first derivative operator, the solution at even grid points completely decou-

pies from the odd grid points, leading to unphysical results. One remedy is to introduce

terms of the same order as the truncation error which in effect replaces the two first deriv-

ative operators with a single second derivative operator. This couples the solution at odd

and even grid points while maintaining the same formal order of accuracy. The Laplacian

operator is discretized using a single second derivative operator to prevent possible decou-

pling and Eq. (4.1) becomes:

u i
8xxiP t_ = _xi H + (4.2)

where 6_,pM represents the discrete Laplacian of pressure and is discretized using the

compact second derivative operator given by Eq. 3.22.

Writing Eq. (4.2) at all grid points results in a system of equations that is solved at

each sub-stage of the time advancement scheme. For simplicity, the system of equations

are defined for the 2-D Poisson equation with periodic boundaries on a uniform grid. The

Laplacian operator is discretized using the fourth-order tridiagonal scheme defined in Sec.
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3.2.2.The solutionprocedureis easily extendedto the 3-D Poissonequation.Equation

(4.2)canbewritten in theform of asystemof equationsas:

-I -1

AP = [AxxBxx+ A),),By),]P = F (4.3)

L
o

AXX = o

o

L

(nj x nj block matrix)

o

where /_ = o
o

cxlct

otl

(nix ni scalar matrix)

"1 al =1

ctl 1 cti
o

Ayy = o
o

a7 i a1

=i cO i

(njx nj block matrix)

where 1 is the nix ni identity matrix

o

X

(njx nj block matrix'

Ii'1-2 1

o

where _ = o
o

1 -2

1

(hi x ni scalar matrix)

-2i 1

] -21 ]

o

By), = -_

Y

-21

(nj x nj block matrix)

-2i

o

o

1-2i 1

I -21

P = [PI_2°°°Pnj] T,

(njx I block vector)

F=[Pl_2°°orn] T,

(nj x 1 block vector)

where Pj : let, j e2, j°°° eni,] T

(nix 1 scalar vector)

where _'j= [FI,jF2, j °°° Fni,_ T

(hi x 1 scalar vector)

where Pi,j and Fi, _ = _)_[H i + ui/(bMAt)]i,s are the pressure and source term at the i,j grid

point, respectively. The symbols, N x +1, Ny +1 denote the number of grid points in the x, y
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directions,respectively.Valuesat i = Nx+l andj = N_.+I locations are replaced by values

at i = 1 andj = 1 since the boundaries are periodic. This change results in a non-zero ele-

ment in the upper right and lower left comers of the coefficient matrices. The constants, ct

and a, are from the fourth-order tridiagonal scheme for the second deriviative given in Sec.

3.2.2. The sixth-order compact scheme (with pentadiagonal RHS) can be written in the

same manner by including the i+2 and j+2 terms in the Bxx and Byy matrices.

For non-periodic boundaries, the second derivative boundary scheme given by Eq.

3.23 is used at the boundary points. In addition, the unknown pressures at the boundaries

are replaced with their boundary values and those terms are moved and added to the RHS

of Eq. (4.3). For Dirchlet boundary conditions, such as the freestream conditions given by

Eq. (2.24), this procedure is straightforward. Neumann boundary conditions, such as those

applied at the inflow and outflow planes, require that the pressure gradient at the boundary

be discretized using a first derivative scheme (Eq. 3.19):

P = _x'_abs,Pi, j
I,j

i=1

(4.4)

where the subscripts ,j are used to denote the inflow plane for example. The boundary

pressure, Pl,j is then solved for:

3

I--[Axle)P--') - _. ab_ pi, j] (4.5)
Pl,j = abs, L _,c3xl2t.; /=2

Equation (4.5) is then used to substitute for the boundary pressures in Eq. (4.3). The first

term on the RHS of Eq. (4.5) is known from the boundary condition and is moved and

added to the RHS of Eq. (4.3). The second term on the RHS of Eq. (4.5) contains the

unknown pressures, P2,j and P3,j, so they are kept on the LHS of Eq. (4.3) and modify the
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existing terms of the coefficient matrix, A. The resulting system of equations contains only

the interior pressures as unknowns, Pi,j, 2 < i < Nx - 1 and 2 < j _<N r - 1.

Equation (4.3) results in a "cross" type stencil at the i, j node in which all points along

lines passing through the central node contribute to the stencil. The coefficients of this

stencil are implicitly defined in the sense that the matrix operations, [a_xB_x + a_l.Bry], in

Eq. (4.3) must be performed to determine their values.

Multiplying Eq. (4.3)by AyyAxx gives:

-I
[ AyyBxx + AyyAxxA yyByy]P = A),yAxxF (4.6)

It is easy to show that the matrices Axx and Ayy commute, i.e. AyyAxx = AxxAyy. Using this

property, Eq. (4.6) simplifies to:

[AyyBxx + AxxBy),]p = AyyAxxF (4.7)

Using the coefficients of the fourth-order compact approximation to the second derivative

results in an explicit nine-point, "grid" type stencil for the LHS and RHS of Eq. (4.7):

I_2a(l+_)]pi, i+ (4.8)
',h x

[-2a(_2 _2_l[P,y+,+Pij-,]+[-2a(_-2 21h2)][Pi+,.j+Pi-,j ]+
\h x 2hy j-J ' , hr "

[aO_f-_+--_)l[Pi+l,j+l+ Pi+l,j_l + Pi_l,j`l + Pi_l.)_ll = Fi.)+

',h x h/3

o_[Fi, j+l + Fi, j-I + Fi+l,j+ Fi-I,j] +_2[Fi+l,j+l + Fi+l,j_ 1 + Fi-l,j+l + Fi_l,j_ 1]

Using the coefficients of the sixth-order compact approximation to the second deriva-

tive results in the same nine-point stencil for the RHS and an explicit twenty-one point

stencil on the LHS:
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h/J '

. Lh_ k h_J

4hyJ '

b_l[p
"-_-'_J i+2,)+l+Pi+2, y-l+Pi-2, y+l+Pi-2, j-I] +

[._2l[r'i. Lj.2 + Pi+ ,, j-2 + Pi-l,j+ 2 + Pi-, )-21 +

4hyJ

h)/J

cc[Fi,j+1 + Fi,j-j + Fi+ l,i+ Fi-l,j] +a2[Fi+1,)+l + Fi+1,)_n + Fi_t,)+ n +Fi-I,)-I]

Thus for uniform cartesian grids, the stencils of Eqs. (4.8) and (4.9) are preferred

because they require fewer operations and their coefficients are explicit as compared to the

stencil of Eq. (4.3). The commutative property of the Axx and Ayy matrices is valid even

with non-periodic boundaries. Numerical experiments confirm that the cross-type stencil

represented by Eq. (4.3) and the grid-type stencil of Eq. (4.8) or Eq. (4.9) give identical

results.

4.2 Iteration Matrix

A point relaxation scheme is used to iteratively solve the system of equations repre-

sented by Eq. (4.3) of Eq. (4.8). In this approach, only the value at the central node of the

stencil, Pi,j, is treated as an unknown so that the multi-diagonal system of equations

degenerates to a diagonal system for one relaxation sweep, which is trivial to solve. This

process can be written in matrix notation by decomposing the matrix, A, into the sum of

the diagonal, lower, and upper matrices of A (Briggs 1987):
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AP = [D-L-U]P = F (4.10)

where the matrix, D, is the diagonal matrix of A, and the matrices, L, U, are the lower and

upper matrices of A, respectively. The solution at the current iteration level, P*, is cor-

rected with the increment, P', to yield the solution at the next iteration level, P = P* + P'.

For Jacobi iteration the terms, -LP and -UP, are assumed to be known from the previous

iterate, P*, and are moved to the RHS so that Eq. (4.10) becomes:

DP = F+ [L+ U]P* (4.11)

Adding the term -DP* to both sides of Eq. (4.11) casts the equations into incremental

form:

DP' = F-AP ° = R* (4.12)

where R* is the residual vector. Equation (4.12) defines one iteration of the Poisson equa-

tion. The increment, P', is computed by solving the trivial diagonal system of equations

and is then added to the current iterate to yield the solution at the next iteration level:

p = p* + D-lR * (4.13)

This procedure is defined as a Jacobi iteration. Weighted Jacobi iteration can under-relax

or over-relax the iterative process by multiplying the increment, P', by a relaxation param-

eter, co, so that Eq. (4.13) becomes:

p = p* + toD-IR * (4.14)

where 0 < to < 1 denotes under-relaxation, and to > 1 denotes over-relaxation. Jacobi

iteration is equivalent to computing the residual of the current iterate, P*, at all grid points

followed by an update operation. In this regard, information is held and the solution is

updated at all grid points simultaneously. Since the computation of the residual vector and

the updating of the solution vector are completely separate operations, each operation is
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fully vectorizable. This results in an improved computational rate when those operations

are performed on vector computers.

Gauss-Seidel iteration makes one modification to Jacobi iteration - the updated solu-

tion is used as soon as it is computed. This can be written in matrix form by considering

Eq. (4.10). The term, -UP, is assumed to be known from the previous iteration and is

moved to the RHS requiring the solution of the lower triangular system:

[D-L]P = F + UP*

In incremental form, Eq. (4.15) becomes:

(4.15)

P = P* + [D-L]-tR" (4.16)

Moving the term, -UP, to the RHS in Eq. (4.10) is equivalent to updating the solution vec-

tor in an ascending order (i.e., P1,1, P2,1 ..... Pni, nj)" If the term, -LP, is moved to the RHS

instead, the variables are updated in descending order (i.e., Pni, nj, Pni-l,nj ..... P1,1)" Many

other updating strategies are possible. For instance, if the grid points are colored black or

red similar to a checkerboard pattern then during the first sweep all the red points are

updated, followed by an update of all the black points. This strategy is referred to as red-

black Gauss-Seidel. The order in which the grid points are visited for Jacobi iteration is

immaterial since the solution vector is updated only after the residual is computed at every

grid point. Similar to weighted Jacobi iteration, Gauss-Seidel iteration can be under- or

over-relaxed by multiplying the increment, P', by the relaxation factor, co:

P = p'+to[D_L]-tR" (4.17)
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4.3 Multigrid Solution

Relaxation schemes such as Jacobi and SOR applied on a single grid level suffer from

poor convergence rates as the-number of grid points increase. Through Fourier analysis it

can be shown (Briggs 1987) that the high frequency error components (i.e. the difference

between the current iterate and the fully convergenced solution) are removed very quickly,

while the low frequency components require many iterations to be reduced to an accept-

able level. In other words, many relaxation schemes are efficient smoothers (i.e. they

remove high frequency error components with a few iteration sweeps) but are poor solvers

because they require many iterations to remove low frequency components.

Multigrid methods overcome these deficiencies by utilizing a hierarchy of grids.

Smooth error components are transfered to coarser grids where they appear as high fre-

quency error components and are quickly removed by relaxation sweeps. Relaxation

sweeps on the coarser grids are also much cheaper to perform.

A coarse grid correction scheme is utilized in the current study to improve the conver-

gence rate of the pointwise relaxation scheme on a single grid. Subscripts are used to

denote grid level, i.e. Ph and P2h denotes the solution on the fine and coarse grids, respec-

2h
tively. The symbol, I h , is used to denote transfer from the fine to the coarse grid, while

h
IEh is used to denote transfer in the opposite direction. The algorithm for one coarse grid

correction is given below and additional details can be found in Briggs (1987).

(1) Smooth the current iterate, P_, on the fine grid vl times:

n(i)
Ahl.- h = Fh
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(2) Calculatetheresidualon thefinegrid:

R h = Fh-AhP_ 1)

(3) Transfer (restrict) the residual to the coarse grid, where it is used as the source term

for the error equation:

2h
F2h = I h R h

(4) Solve for the error on the coarse grid:

E2h = A21hF2h

(5) Transfer (prolongate) the error to the fine grid and correct the solution:

h
p_2) = p_l) + 12hE2h

(6) Perform v 2 post-relaxation sweeps:

AhP h = F h

Standard second-order interpolation is used to transfer variables from the coarse to the

fine grid, while the full weighting operator is used to transfer variables in the opposite

direction. Although the above algorithm utilizes only two grid levels, improved efficiency

results from encorporating as many grid levels as possible. In this respect, the direct solu-

tion of the error equation in step (5) is performed on a very coarse grid requiring a small

number of operations. Simulations presented in Chaps. 6 and 7 utilize five grid levels.

Since the simulations are performed on vector computers, Jacobi iteration was utilized

for relaxation sweeps because it is fully vectorizable. Two pre- and two post-relaxation

sweeps were performed on each grid. Through numerical experiments, the optimum relax-

ation factor for the uniform grid formulation was found to be, to -- 0.9. Typically, three
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coarsegrid correctionswereperformedfor the solutionof the Poissonequationwhich

reducedtheinitial L2 normof theresidualtwo ordersof magnitude.Testsusingtwice as

manycorrectionsresultedin amaximumof 3%differencein thepressure.

4.4 Performance of Computer Code

The computational rate of the computer code on uniform and curvilinear grids is given

in this section. The numerical formulation was extended to curvilinear grids which was

used to concentrate grid points in the mixing layers of the rectangular jet near the inflow.

Downstream of the potential core, the flow is fully turbulent. Clustering of the grid to

resolve large gradients due to small scale structures is not possible without the use of time-

varying, adaptive grids (which is outside the scope of the present study). Therefore, the

grid is gradually relaxed to uniform spacing in this region. As mentioned in Sec. 4.1, uni-

form grids enable manipulation of the discrete Poisson equation leading to a reduced sten-

cil size and cost as compared with the curvilinear grids making the computational rate

roughly one order of magnitude less. Part of the reason for the increase in computational

rate is that convergence rates for the multigrid solution of the Poisson equation deteriorate

with grid clustering and large aspect ratio. Table 4.1 lists the computational rate for Carte-

sian and curvilinear formulation. Also listed in the table is the rate of a second-order accu-

rate formulation from Le and Moin (1994). Therefore, the uniform grid formulation was

utilized for most of the simulations to be presented in Chaps. 6 and 7.
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Table 4.1 Computational rate

Rate
Study Grid Scheme

(cpu/t.s../pt)

Wilson Cartesian fourth-order 5.7 x 10 -6

compact

Wilson curvilinear fourth-order 6.2 x 10 -5

compact

Le & Moin (1992) Cartesian second-order 3.9 x l0 -6

central
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Chapter 5

VALIDATION OF NUMERICAL METHOD

In this chapter, the numerical formulation is validated through the solution of a wide

range of benchmark problems. Emphasis is placed on the numerical approximation of spa-

tial derivatives. In particular, the convection terms (containing first derivatives) present the

most difficulty in numerical approximation since large dispersion errors exist at high

wavenumbers (kAx- n ). It is essential that the numerical approximation to the first deriva-

tive provide low dispersion errors over a large range of wavenumbers. This is especially

true in 3-D simulations where reducing the required number of grid points by half in each

coordinate direction leads to eight times fewer total grid points.

In Chap. 3, the theory showed that compact schemes require roughly five times fewer

points to accurately resolve a given mode compared to the standard second-order central

difference approximation to the first derivative. This theory is tested by solving some prac-

tical problems ranging from the 1-D convection equation to the 2-D Navier-Stokes equa-

tions.

The purpose of the present chapter is to (i) demonstrate the resolution qualities of the

compact schemes and (ii) compare and contrast results from the compact scheme with

results from other popular schemes.
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5.1 1-D Convection Equation

The first problem to be solved is the 1-D convection equation, Eq. (3.12), which tests

the time advancement scheme and the numerical approximation to the first derivative. The

exact solution corresponds to convection of the scalar profile at the constant wave speed, c.

Distortion in the shape of the profile indicates dissipation and/or dispersion errors in the

solution. The convection of a Gaussian profile was solved using three approximations to

the first derivative; (i) a second-order central difference, (ii) a third-order upwind, and (iii)

the fourth-order compact approximation outlined in Section 3.2.1. The third-order Runge-

Kutta scheme was used to advance the equation in time for all spatial schemes. In addition,

the CFL number (and thus the time step) was kept small so that resulting errors are due to

the spatial formulation.

The parameters and initial conditions are those proposed at the ICASE/LARC Work-

shop on Benchmark Problems in Computational Aeroacoustics, Hardin et al. (1995):

]u(x,O) = 0.5exp - _ In(2) , (5.1)

-20 <x< 450, N x = 470 grid points, c = 1

Since the specified grid is relatively coarse in comparison with the initial conditions, this

problem provides an excellent test of the resolution power of the numerical approxima-

tion. Figure 5.1 shows the computed solutions at t = 400 after the profile has convected to

x = 400. There is little discernible difference between the exact solution and the solution

with the fourth-order compact scheme. However, the solutions with the second-order cen-

tral difference and the third-order upwind approximations show greatly reduced peak val-

ues and large, dispersive waves trailing the Gaussian profile. The errors from the second-

order central difference scheme are the most severe.
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It is difficult to determineby inspectionwhatportion of the error is dispersiveand

whatportion is dissipative.The solutionsaretransformedinto wavenumberspaceusinga

Fouriertransformmethodandcomparedwith theexactsolutionin Fig. 5.2to addressthis

issue.The graphdisplaystheresultingcomplexFouriercoefficientin polar form with the

amplitudedisplayedin Fig. 5.2aandthephaseanglein Fig. 5.2b.It canbeseenfrom Fig.

5.2athat thesolutionscomputedwith thesecond-ordercentraldifferenceandfourth-order

compactschemespredictthecorrectamplitudefor all modes.Theamplitudeof thesolu-

tion computedwith thethird-orderupwind schemeis reducedor dissipated,especiallyat

higher wavenumbers.Figure 5.2bshowsthat the fourth-ordercompactschemepredicts

thecorrectphaseangleevenfor thehighestwavenumbers.

The phaseanglefrom the second-andthird-order solutionsareonly correctlypre-

dictedfor thevery lowestwavenumbers(k<0.2 for the second-ordersolutionandk < 0.3

for the third-order solution). Large dispersion errors are evident at high wavenumbers. The

above trends in the numerical solutions are consistent with the dissipation/dispersion error

theory for the 1-D convection equation and show the resolution power of the compact

schemes.

The second problem, also proposed at the ICASE/LARC Workshop on Benchmark

Problems, is the solution of the 1-D convection equation in a spherical coordinate system.

The governing equation takes the form:

_U U _U

b-i + x + _ = 0 (5.2)

5 < x < 450, N x = 445 grid points

Initial Conditions:

u(x, 0) = 0

61



BoundaryConditions:

u(5, t) = sin(_4)

Figure 5.3 shows the exact solution at t = 400 which corresponds to a damped sine wave

due to the addition of the u/x term in the governing equation. Fig. 5.4 shows computational

results for the region, 200 < x < 220 using the third-order upwind approximation to the

first derivative on two grids and the fourth-order compact scheme. The solution with t 6

points per wavelength shows a greatly reduced amplitude and a phase shift relative to the

exact solution. It takes roughly 64 PPW (not shown) to reproduce the exact solution with

the third-order upwind approximation. The fourth-order compact approximation is able to

reproduce the exact solution with 8 PPW.

5.2 2-D Convection Equation

Multidimensional effects of the numerical formulation are explored by solving for the

convection of an inverted cone around a circle. This problem is governed 2-D convection

equation:

0u /)u 0u
3--i+ cx_xx+ %_yy = 0 (5.3)

where cx = -y and Cy = x, are the convection speeds in the x and y directions, respectively.

The initial conditions are that of an inverted sharp cone centered at x, y = -0.5, 0. The exact

solution corresponds to the cone being convected counterclockwise in a circular path of

radius, ro = 0.5 with a period of 2n. Distortion of the shape of the cone is an indication of

dispersion and/or dissipation errors.

Figure 5.5 shows computed results after one revolution of the cone using (a) a third-

order upwind approximation and (b) a fourth-order compact approximation to the first
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derivativesona32 x 32 grid with uniform spacing. This grid defines the shape of the cone

with a maximum of 8 points in each coordinate direction. The exact shape of the cone is

included to the right of the computed solution at x, y = 0.5, 0 for comparison purposes. The

third-order solution (Fig 5.5a) shows that the sharp point of the cone is greatly diffused

and that dispersion errors are evident trailing the cone. A grid of 128 x 128 (or 32 points

defining the shape of the cone) must be used with the third-order upwind approximation

before the shape of the cone is faithfully reproduced. The fourth-order compact solution

(Fig 5.5b) shows that the shape of the cone is not distorted as it is convected around the

circle on the 32 x 32 grid. Indeed, the only noticeable error is a very small "grid to grid"

oscillation due to the absence of physical viscosity in this problem and numerical viscosity

in the compact scheme.

Figure 5.6 shows results for the same problem after one revolution obtained by Orszag

(1971) using (a) second-order Arakawa finite-difference, (b) fourth-order Arakawa finite-

difference, and (c) a spectral approximation to the first derivatives on a 32 x 32 grid. The

finite difference solutions show errors similar to the third-order solutions in Fig. 5.5. The

spectral method, which provides exact differentiation for all wavenumbers representable

on the 32 x 32 grid, convects the cone without distorting its shape. Thus, the solution using

the compact scheme is closer to the spectral solution than the solutions obtained with con-

ventional finite difference schemes. The higher accuracy and resolution characteristics are

achieved by the implicit treatment of the derivative. Even though the stencil size of the

compact scheme is finite, the implicit treatment of the derivatives makes the scheme glo-

bal much like that of spectral methods.
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5.3 2-D Euler/Navier-Stokes Equations

In the previous sections, the effect of numerical approximation on the accuracy of the

convection terms was documonted. In this section, the accuracy of the enforcement of the

continuity equation through the solution of the Poisson equation for pressure is

documented by solving the 2-D Euler/Navier-Stokes equations. Since the Navier-Stokes

equations contain viscous terms, the numerical approximation to the second derivative is

also tested. The test problems chosen for validation contain many features of the 3-D jets

which are simulated in the current study. In this respect, the test problems are not merely

academic exercises. There benchmark problems are solved; (i) a temporally-developing

plane mixing layer (2-D Stuart's problem), (ii) 2-D viscous wave decay, and (iii) the

doubly periodic jet. Problems (i) and (ii) have exact solutions while results of (iii) will be

compared to a highly resolved spectral simulation.

5.3.1 2-D Temporally-Developing Plane Mixing Layer

Exact solutions to the Euler or Navier-Stokes equations for general flows do not exist

due to the non-linearity of the convection terms. However, under special conditions exact

solutions may be found. An exact solution for the temporally-developing mixing layer was

first published by Stuart (1967). The initial conditions for the 2-D Stuart's problem corre-

spond to a steady hyperbolic tangent function for the streamwise velocity component with

a periodic array of vortex cores in the mixing region which cause the solution to vary in

time. The wavelength of the disturbance corresponds to the neutral mode such that the dis-

turbance is convected in the streamwise direction with no change in amplitude. The exact

solution for the streamwise velocity component, u, and the transverse velocity component,

v is given by"

u(x, y, t) = c+
Csinh(y)

Ccosh (y) + A cos (x - ct)

64



v(x, y, t) = Asin(x- ct) (5.4)
Ccosh(y) + A cos(x - ct)

where A = 4/'C2- 1 is a parameter which controls the strength of the perturbation and c is

the convective speed of the mixing layer. The flow is periodic in the streamwise direction

with length, L x = 2n, 0 _<x_<2n. The flow is infinite in the transverse direction but in this

study is truncated at a finite distance, -L r < y < Ly, such that the zero-traction freestream

boundary condition outlined in Section 2.2.3 is well approximated. Tests which vary the

transverse domain height, 2/_.y show that Ly = 10 is sufficiently large to implement this

boundary condition. The exact solution is shown in Fig. 5.7a with parameters, c = 1, A = 1/

2. A uniform, cartesian grid is used for the simulations in this section. Unless otherwise

specified, the third-order Runge-Kutta scheme is used for time advancement and time

steps are sufficiently small so that spatial errors are dominant.

Figure 5.7b shows the numerical solution at t = 20n (ten flow through times) on a rel-

atively coarse grid of 13 (streamwise) x 41 (transverse) using the fourth-order compact

approximation of convection terms and pressure. The solution of pressure involves the

computation of the source term and the discretization of the Laplacian operator in Eq.

(3.39). In addition, once the Poisson equation is solved for pressure, the gradient of pres-

sure is computed which is required to advance the momentum equation in time. Therefore,

the phrase "fourth-order solution of pressure" corresponds to the source and pressure gra-

dient terms computed with the compact first derivative scheme outlined in Section 3.2.1

while the Laplacian operator is discretized using the compact second derivative scheme

outlined in Section 3.2.2.

Even though the grid is relatively coarse (13 streamwise points per wavelength and

roughly 8 points in the mixing region at y-0), there is little discernible difference

between the exact and numerical solutions after ten flow through times. It is important to

65



checkthe convergenceof the error as the grid is refined to expose any coding errors, to

demonstrate that the order of error convergence seen in practical computations is that pre-

dicted by a Taylor series analysis, and to gain confidence in the numerical formulation.

Tables 5.1 and 5.2 give a quantitative measure of the L2 and maximum errors in the veloc-

ity components at t = 0.1 using the fourth- and sixth-order compact approximations to the

convection terms and solution of pressure, respectively. Solution errors from three grids

are shown where the grid spacing in the x and y directions is halved from coarsest to finest

grid. The results show that the L2 and maximum errors converge at roughly the rate pre-

dicted by a Taylor series analysis as the grid is refined. The order, N, is computed using the

solution error from three grids of spacing, h, 2h, and 4h:

,.r
Li2h-_4_d

= .,2 (5.5)

where Ch, _2h, 1_4h are the errors on the h, 2h,and 4h grids, respectively. In using Eq. (5.5) it

is assumed that the solution is fully resolved on all three grids and that the leading trunca-

tion error term is dominant (Demuren and Wilson 1994).

Table 5.1 Solution errors for 2-D Stuart's Problem at t = 0.1 using fourth-order

compact approximation for convection terms and solution of pressure.

Grid (hi x hi)

13x41

25 x 81

49 x 161

Order (N)

Max U Error

0.18 x 10 "z

0.86 x 10 -4

0.47 x 10 .5

4.2

Max V Error

0.21 x 10 .2

4.1

L2 Norm U L2 Norm V

0.18x 10 -3 0.24x 10 .3

0.80x 10 .5 0.11 x 10 .4

0.57 x 10 -6 0.74x 10 .6

4.5 4.5

Table 5.2 Solution errors for 2-D Stuart's Problem at t - 0.1 using sixth-order

compact approximation for convection terms and solution of pressure.

Grid (nix ni)

13x41

Max U Error

0.73 x 10 "j

25 x 81 0.17 x 10 -4

49 x 161 0.15 x 10 -5

Order (N) 5.4

Max V Error

0.10 x lif e

0.20 x 10 .4

0.18 x 10 .5

5.7

L2 Norm U

0.97 x 10 .4

0.12 x t0 .5

0.25 x 10 -6

6.3

L2 Norm V

0.11 x 10 "j

0.14 x 10 .5

0.45 x t0 .6

6.2

66



To addresstheeffectof computingthepressurewith a lower-orderformulation,the2-

D Stuart's problemwas solved using second-ordercentral, fourth-ordercompactand

sixth-ordercompactapproximationof theconvectiontermsbut asecond-ordercentraldif-

ferencesolutionof thepressure.Theresultsof thethreecomputationsareshownin Tables

5.3- 5.5.Theresultsof thethreecomputationsshowthat the lower-ordersolutionof pres-

sureresultsin theoverallconvergenceof theerrorbeingsecond-order,evenif theconvec-

tion termsreceivea higher-ordertreatment.All termsmustbe discretizedusing higher-

orderapproximationsto achievehigher-ordererrorconvergencerates.

Table5.3Fourth-order compactapproximation for convection terms/

second-order solution of pressure.

Grid (nix hi) Max U Error

13 x 41 0.89 x 10 "2

25 x 81 0.20x 10 -2

49 x 161 0.51 x 10 3

Order (N) 2.2

Max V Error

0.11 x 10 l

0.25 x 10 -2

0.58 x 10 "3

2.2

L2 Norm U

0.20 x lif e

0.42 x 10 .3

0.11 x 10 .3

2.4

L2 Norm V

0.20 x 10 "2

0.44 x 10 .3

0.11 x 10 .3

2.2

Table 5.4 Sixth-order compact approximation for convection terms/

second-order solution of pressure.

Max V Error

0.11 x 10 "1

0.25 x 10 -2

L2 Norm U

0,20 x 10 "2

0.42 x 10 .3

L2 Norm V

0.20 x 10 "z

0.44 x 10 "3

Grid (hi x ni)

13x41

25x81

Max U Error

0.87 x 10 z

0.20 x 10 "2

49 x 161 0.45 x 10 .3 0.60 x 10 .3 0.10 x 10 .3 0.11 x 10 .3

Order (N) 2.1 2.2 2.3 2.2

Table 5.5 Second-order central difference approximation for convection terms/

second order solution of pressure.

Max V Error

0.15 x 10 "j

0.38 x 10 -2

L2 Norm U

0.21 x 10 .2

0.45 x 10 -3

0.11 x 10 .3

L2 Norm V

0.20 x 10 .2

0.53 x 10 "3

Max U Error

0.11 x 10 "L

0.13 x 10 -3

Grid (nix ni)

13x41

25x81 0.22 x 10 -2

0.61 x 10 3 0.98 x 10 .349 x 161

Order (N) 2.4 1.9 2.3 2.1

The solution of the 2-D Stuart's problem validates the numerical formulation for the

enforcement of the continuity equation and the solution of the Poisson equation for pres-

sure. In addition, it has been shown that the zero-traction freestream boundary condition
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for shear flows is a valid approximation provided that the freestream boundary is located a

sufficiently far distance from the mixing region.

5.3.2 Viscous Wave Decay

The numerical treatment of viscous terms is validated by solving the 2-D viscous wave

decay problem which is governed by the Navier-Stokes equations. The domain for this

problem is periodic in both the x and y directions where periodic boundary conditions are

applied. The exact solution is given by:

_(2_,)
u(x, y, t) = -cos(x)sin(y)e Re

_(2,)
v(x, y, t) = sin(x)cos(y)e _e

where Re = 20, L x = Ly = 1. The exact solution consists of sinusoidal waves in the x and y

directions which decay in time. Table 5.6 shows the L2 norm of the error at t = 0.025 using

the fourth- and sixth-order compact approximations for convection and diffusion terms

and the solution of pressure. The results are compared to the fourth-order, Essentially

Non-Oscillatory (ENO) scheme from Weinan and Shu (1992). The error converges at

fourth- and sixth-order rates thus validating the numerical treatment of the viscous terms

and again validating the convection terms and the solution of pressure. The error of the

ENO scheme converges at a fourth-order rate, but is more than two orders of magnitude

greater than the fourth-order compact results. The error magnitude of the sixth-order com-

pact formulation on the 128 x 128 grid has reached the round-off error level ( - 10-_3) of

the Cray supercomputer, indicating that extremely accurate results are obtained on aver-

age-sized grids.

68



Table 5.6 Solution errors for 2-D viscous wave decay.

Grid (hi x nj) 4th oa compact 6th oa compact 3rd(4th) oa ENO

16x16 _ 0.14 x lff 6 0.10x 10 7

32 x 32 0.77 x 10 8 0.15 x 10 .9 0.53 x 10 -5

64 x 64 0.47 x 10 -9 0.27 x 10 "11 0.32 x 10 .6

128x 128 0.71 x 10 10 0.11 x 10 "12 0.20x 10 -7

Order(N) 4.0 6.0 4.0

5.3.3. Doubly Periodic Jet

The last validation test is the solution of the doubly periodic jet which is governed by

the 2-D Euler equations. The initial conditions correspond to a jet or "top hat" profile for

the streamwise velocity component. The initial conditions and problem parameters are:

: 1
u(x,y,O) Ltanh [(3rc/_ - Y)] ;Y >/t]

v(x, y, 0) = 8sin(x)

where L x = L r = 2n, 8 -- 0.05, and p = r_/15. The flow begins with two parallel, finite-

thickness shear layers, one with positive vorticity and the other with negative vorticity. A

small amplitude perturbation is provided through the transverse velocity component which

causes the shear layers to roll up into vortex cores as they evolve. Between the vortex

cores, the shear layers are stretched and thinned as they are wound around the vortex

cores. Without viscosity, the scales of motion become smaller and smaller so that eventu-

ally resolution is lost on any fixed grid. This problem represents a worst case scenario

where the scales of motion cannot be resolved on the grid. Therefore, it is an extremely

demanding test of the resolution power of the numerical formulation.
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Figure 5.8 showsvorticity contoursof the evolutionof the doublyperiodicjet using

spectralmethodson ahighly resolvedgrid of 512x 512 from Weinan and Shu (1992). An

18th-order filter has been used to remove energy at the highest wavenumbers which would

otherwise contain aliasing errors. Since spectral methods yield exact differentiation and no

unphysical oscillations occur during the time interval, 0 < t < 8, we can infer that this

simulation is extremely accurate during this period. The vorticity contours at t = 10 show

the beginning of unphysical oscillations or "wriggles" which is a sign that the

computations are under-resolved and the smallest scales of motion are determined by the

grid and not the physics of the problem.

Figure 5.9 shows vorticity contours for an unfiltered simulation of the doubly periodic

jet using the sixth-order compact formulation for convection terms and the solution of

pressure on a 128 x 128 grid. Even though the simulation contains 1/16th the number of

grid points used in the spectral simulation, all of the relevant features of the jet are

captured. The results show that the location of the braids and details of the vortex cores are

well predicted. However, for t > 6, the results are not as smooth as the spectral simulation

and unphysical "wriggles" appear in the braid region at t = 10.

Figure 5.10 shows vorticity contours from a simulation using the sixth-order compact

scheme where the velocity field is filtered every ten time steps with an explicit sixth-order

filter. For this computation, the velocity field is filtered in the x and y coordinate directions

to remove energy at the highest wavenumbers (/tax - n ). The unfiltered quantity, _, is fil-

tered in the x coordinate direction to produce the filtered quantity, _ :

b c d

= a_i+_(_i+l +¢_i-1)+_(_i+2+¢_i_2)+_(_i+3+(_i_3)

(5.6)
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wherec_, a, b, c, and d are the coefficients of the filter. The coefficients for the sixth-order

explicit filter are summarized in Table 5.7 along with a second-order explicit and fourth-

order compact filter. A similar equation exists for filtering in other coordinate directions.

Since the boundaries for this problem are periodic, no additional boundary schemes are

required. For problems with non-periodic boundaries, such as the simulations presented in

Chap. 7, the following fourth-order boundary filters are used at the first three grid points:

,561 = "i"_¢l + (4¢2 - 6¢3 + 4¢4 - ¢5)

¢2 = 3 _6_¢2 + (¢1 + 6¢3-4¢4 + 05)

63 = 5 1g¢3 + (- ¢1 + 4¢2 + 4¢4 - ¢5) (5.7)

By transforming the filter from physical to wavenumber space, its effect on the various

modes can be clearly shown. The transfer function defines the filtering operation in wave-

number space (Lele 1992):

T(kAx) = a + bcos(k&x) + ccos(2kAx) + dcos(3kAx) (5.8)
1 + 2c¢cos(kAx)

The transfer function for the sixth-order explicit filter is plotted in Fig. 5.11 along with

a second-order explicit and fourth-order compact filter for comparison. The LES presented

in Chap. 7 utilizes the fourth-order compact scheme together with this fourth-order

compact filter. It can be seen that the fourth- and sixth-order filters eliminate the highest

wavenumber ( kax - n ) while leaving the low wavenumbers unchanged. The fourth-order

compact filter is a high-bypass filter in the sense that relatively high wavenumber modes

(kax < 1.5 ) pass through the filter without being changed. Recall from Fig. 3.2 that the

approximation to the first derivative is accurate for the low to moderately high

71



wavenumbersand that wavenumbers,kAx-re, are not well represented. Therefore, the

effect of the filter is to remove energy from those modes which are not well represented.

The vorticity contours from the filtered simulation (Fig. 5.10) show that the filtering

operation removes the unphysical oscillations while maintaining the fine scale details of

the flow. In Fig. 5.12, a simulation using the fourth-order ENO scheme from Weinan and

Shu (1992) is shown for comparison purposes.The simulation using the ENO scheme with

the same grid shows that the braids and vortex cores are diffused and that information is

lost for t _>8. A simulation of the doubly periodic jet at t = 10 using the sixth-order com-

pact scheme and explicit filter is shown in Fig. 5.13 on a 256 x 256 grid.

Table 5.7 Coefficients for filters

Scheme et a b c d

second-order, explicit 0 i/2 1/2 0 0

fourth-order, compact 0.475 (5 + 6o0 (1 ÷ 2ct) (1-2o 0 08 2 8

sixth-order, explicit 0 !1/16 15/32 -3/16 1/32
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Fig 5.1 Solution to the 1-D convection equation at t = 400 in physical space for

various finite difference approximations of the first derivative term.
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Fig 5.2 Solution to the 1-D convection equation at t = 400 in wavenumber space
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Fig 5.3 Exact solution to the spherical wave problem at t = 400.
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Fig 5.4 Numerical solution of the 1-D spherical wave problem at t = 400 for the

region, 200 < x < 220.
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7. O

7. 0

Fig 5.5 Numerical solution of the rotating cone problem after one revolution on a

32 x 32 grid (a) third-order upwind scheme, (b) fourth-order compact

scheme. Numerical solution is shown to the left, exact solution to the right.
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Fig 5.6 Numerical solutionof the rotating coneproblem after one revolution on a

32 x 32 grid from Orszag (1971), (a) second-order Arakawa scheme, (b)

fourth-order Arakawa scheme, and (c) spectral methods.
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Fig 5.7 Solution of the Stuart's problem, (a) Exact solution and (b) numerical

solution using fourth-order compact scheme on a 13 x 14 grid at t = 20_.
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Fig 5.8 Numerical solution of the double shear layer using spectral methods on a

5122 grid from Weinan and Shu (1992), (a) t = 4, (b) t = 6, (c) t = 8, and (d)

t=10.

79



(a) (b)

0 2 4 G 0 2 4 6

X X

(c) (d_

>-

0 2 4 6 0 2 4 6

x x

Fig 5.9 Numerical solution of the double shear layer using the unfiltered, sixth-

order compact scheme on a 1282 grid, (a) t = 4, (b) t - 6, (c) t = 8, and

(d) t = lO.
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Fig 5.10 Numerical solution of the double shear layer using sixth-order compact

scheme with filtering on a 1282 grid, (a) t = 4, (b) t - 6, (c) t - 8, and

(d) t = lO.
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Fig 5.12 Numerical solution of the double shear layer using fourth-order ENO

scheme on a 128 :_grid from Weinan and Shu (1992), (a) t = 4, (b) t = 6,

(c) t = 8, and (d) t = 10.
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Fig 5.13 Numerical solution of the double shear layer using sixth-order compact

scheme with filtering on a 2562 grid at t - I0.
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Chapter 6

DIRECT NUMERICAL SIMULATION - RESULTS

Results from the direct numerical simulation of rectangular jets at Reynolds number of

Reoe = 750 are presented in this section. The Reynolds number of the jet flow is necessar-

ily low so that all the scales of motion can be resolved with reasonable computational

resources and no subgrid scale model is needed. The effect of Reynolds number on jet

dynamics is addressed in the next chapter where large-eddy simulations are preformed at

ReDe = 75,000. Emphasis is placed on LES of non-circular jets (Chap. 7) at higher Rey-

nolds numbers where the flow is turbulent as occurs in experiment and nature. Spatial sim-

ulations are performed in this study where the domain is fixed in space and the flow enters

and exits the domain through inflow and outflow boundaries, respectively. This is in con-

trast to a temporal simulation where the domain moves in the streamwise direction such

that a small region of the flow is followed in time. The spatial reference frame is the one

that occurs in nature and is thus preferable. It is also much more computationally demand-

ing because the entire domain of interest must solved be simulated for all times.

6.1 Discrete Mode Forcing

As discussed in Sec. 2.2.1, time dependent boundary conditions are applied at the

inflow to model the jet nozzle a short distance downstream of the exit (x/D e < 1) and to

promote the development of coherent structures within the computational domain. In this

section, results are presented for simulations using discrete modes given by Eq. (2.19).
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Simulationswith discretemodesareusedto studyshearlayer instabilitiesandtheeffects

of forcing. Two casesaresimulatedwith discretemodescorrespondingto; (i) the funda-

mental mode, (co = 0.22 ) at an rms intensity of 3% of the mean core velocity, U o, and (ii)

the fundamental mode (to = 0.22) and the first subharmonic mode (to = 0.11 ) at 1.5%

intensity each. Cases (iii) and (iv) are presented in the next section and utilize the broad

mode forcing at 3% and 15% total rms intensity, respectively. The domain and grid dimen-

sions for the four runs are summarized in Table 6.1.

Table 6.1 Summary of parameters for DNS

Case Forcing function L x x Ly x Lz N x x Ny x N z

(i) fund. @ 3% 12 x 52 129 x 652

(ii) fund. + 1st Subh. 12 x 102 129 x 1292

@ 1.5% each

(iii) broad @ 3% 12 x 102 129 x 1292

(iv) broad @ 15% 12 x 102 129 x 1292

The domain length, L x, listed in Table 6.1 includes a buffer layer of two diameters in

length, giving an active computational domain of ten diameters. The streamwise grid spac-

ing results in 10 points per fundamental wavelength. In Chap. 4 it was shown through the

solution of several benchmark problems, that 8 points per wavelength provides adequate

resolution with the fourth-order compact scheme.

Contours of vorticity magnitude for case (i) at t = 2 flow through times (the time to

travel from inflow to outflow at the convective velocity) are shown in Figs. 6.1a-e. Con-

tours in the major and minor axis planes (Figs. 6. la and b) reveal that the shear layers near

the inflow plane roll up at the fundamental frequency within the first diameter. For the

region, x/D e > 5, the fundamental mode has saturated and decayed. With no additional har-

monic modes present in the forcing function, the jet does not transition to turbulence at
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this Reynoldsnumber.Nearthe outflow plane, x/D e- 10, the jet width in the minor axis

(x-y) plane becomes larger than that in the major axis (x-z) plane indicating that axis

switching has taken place. Figs. 6. lc - e shows the vorticity magnitude at three cross-sec-

tional planes (x/D e = 0, 5, and 10), while Figs. 6.1f- h shows streamwise vorticity at three

cross-sectional planes. (x/D e = 2.5, 5, and 10). Even though there is no streamwise vortic-

ity introduced at the inflow plane (not shown), by x/D e = 2.5 (Fig. 6. lj0 four pairs of

streamwise vortices have formed in the higher curvature comer regions. This results in the

distortion of the initially rectangular boundary layer at x/D e = 0 to the diamond pattern at

x./De= 10.

Vorticity contours for case (ii) at t = 2 flow through times show that the effect of add-

ing the first subharmonic mode to the fundamental mode is to promote the formation of

additional structures for the region, x/D e > 5. In addition, the shear layer is dominated by

intense vortices in the minor axis plane spaced at the first subharmonic wavelength. By

examining the cross-sectional profiles in Fig. 6.2c-e it is apparent that rapid shear layer

growth takes place in the major axis plane and that axis-switching does not take place.

Cross-sectional contours of streamwise vorticity at x/D e = 5 (Fig. 6.2g) show that four pair

of streamwise vortices develop very close to the jet centerline which leads to a a partial

bifurcation of the jet near x/D e = 10. The streamwise vortices must be generated from the

redistribution of azimuthal vorticity since they are not present at the inflow.

6.2 Broad Mode Forcing

Broad mode forcing is utilized to model naturally developing (unforced) jets with tur-

bulent boundary layers. The resulting forcing function is somewhat random and does not

contain symmetries present in discrete mode forcing. Figure 6.3 shows representative vor-

ticity magnitude contours at t = 2 flow through times.
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In contrastwith simulationsperformedwith discretemodeforcing, theshearlayersdo

not roll up in a periodic fashion.Instead,non-symmetric,randomstructuresare formed

which arecharacteristicof naturally-developingjets. Contoursat the outflow (Fig. 6.3f)

showthat thejet width in theminor axisplaneis largerthanthat in themajor axisplane,

indicatingthataxis-switchingtakesplaceneartheoutflowplane.

Theimpactof theunsteadystructureson themeanflow isexaminedby time-averaging

the resultsof case(iii) with broad mode forcing at 3% intensity over a period of 8 flow

through times. The results from the first flow through time are not included in the time-

averaging so that transients resulting from the initial conditions are convected out of the

domain. After the transient period, the flow field at every other grid point and every fourth

time step is saved to disk. The results are then post-processed to compute statistical quan-

tities such as first and second moment quantities, two-point correlations, and budgets. This

procedure results in roughly 1188 samples in the period of 8 flow through times. The ade-

quacy of sample size is addressed in the next chapter.

The time-averaged jet major and minor axis widths, entrainment, decay of centerline

velocity, and fluctuating centerline velocity from case (iii) are shown in Fig. 6.4 as a func-

tion of streamwise coordinate. The results at this level of intensity show that significant

unsteadiness does not occur until, x/D, - 7. This results in a small growth of the jet widths

and no distinctive end to the potential core region as observed in higher Reynolds number

experimental jets at x/D e -- 4-5. Decay of centerline velocity plots from the DNS of a rect-

angular jet at ReDe = 800 of Miller et al. (1995) also reveal no distinctive end of the poten-

tial core within their computational domain of nine diameters.

In order to test the effect of forcing intensity, a fourth simulation is presented at a

higher intensity of 15%. Jet widths in the major and minor axis planes, entrainment rate,
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centerlinevelocity,andfluctuatingvelocityaregivenin Fig 6.5.Detailedprofilesof time-

averagedvelocity, pressure,and Reynoldsstresscomponentsfor case(iv) are shown in

Figs. 6.6 - 6.15. Time-averaged and fluctuating velocity components are normalized with

the local velocity on the jet centerline, UCL and transverse coordinates are normalized by

the local jet width defined by the transverse distance where U/UcL = 0.5. The location, Yo,

Z 0 = 0, 0 denotes the position of the jet centerline.

Figure 6.5d shows that the effect of increasing the intensity of the inflow forcing func-

tion to 15% is to promote unsteadiness at x/De - 5. The centerline velocity also begins to

decay slowly at roughly x/D e -5. Figure 6.6 shows time-averaged streamwise velocity

along the minor and major axis. The experimental results of a jet issuing from a contoured

rectangular nozzle ofAR = 2 at ReDe = 105 (Quinn 1995) are also shown. This experimen-

tal jet shows axis-switching at x/De - 12. The profiles from the DNS at x/D e =9 show good

agreement with experimental profiles in the minor axis plane only. Fluctuating velocity

profiles shown in Figs. 6.10-6.12 are generally underpredicted in comparison with the

experimental profiles at higher Reynolds number. This is not surprising since the center-

line fluctuating velocity is still increasing near the end of the computational domain of ten

diameters (Fig. 6.5d) while the experimental value reaches its peak at x/D e = 5 - 6 and then

levels off.
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Fig 6.1 Contours of vorticity magnitude (a) - (e) and streamwise vorticity (f) - (h)

for case (i) at t = 2 flow through times for fundamental forcing function. (a)

minor axis plane, z/D e = O, (b) major axis plane, y/D e = O, (c) cross flow

plane, x/D e = O, (d) x/D e = 5, (e) x/D e = 10, (.f) x/D e = 2.5, (g) x/D e = 5, and

(h) x/D e = 10.
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Fig 6.2 Contours of vorticity magnitude (a) - (e) and streamwise vorticity (f) - (h)

for case (ii) at t = 2 flow through times for fundamental and first subhar-

monic forcing function. (a) minor axis plane, z/D e = O, (b) major axis plane,

y/D e = O, (c) cross flow plane, x/D e = O, (d) x/D e = 5, (e) x/D e = 10, (f) x/D e =

2.5, (g) x/D e = 5, and (h) x/D e = |0.
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Fig 6.3 Contours of vorticity magnitude for case (iii) at t = 2 flow through times

for broad mode forcing function. (a) minor axis plane, z/D e = O, (b) major

axis plane, y/D e = O, (c) cross flow plane, x/D e =2.5, (d) x/D e = 5, (e) x/D e =

7.5, and (f) x/D e = 10.
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Fig 6.4 Time-averaged quantities versus streamwise distance for DNS of rectan-

gular jet with broad mode forcing at 3%; (a)jet widths (solid - major axis

plane, dashed - minor axis plane), (b) entrainment ratio, (c) decay of cen-

terline velocity, (d) fluctuating velocity (solid - Urms/Uo, dashed - Urms/

UCL).
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Chapter 7

LARGE EDDY SIMULATION-RESULTS

This chapter discusses the results of large eddy simulation (LES) of non-circular jets at

a higher Reynolds number, ReDe = 75,000. At this Reynolds number, it is not practical

with current computer resources to fully resolve all scales of motion of the jet flow. The

Smagorinsky model outlined in Sec. 2.1.2 is included in the computation to account for

unresolved scales. In addition, the velocity field is filtered every five time steps using the

fourth-order compact filter outlined in Sect. 5.3.3. Filtering removes the highest wave-

number mode which is not accurately resolved, while passing through modes of low to

moderate wavenumber. Results are presented for jets with initially rectangular and ellipti-

cal cross-sections with low aspect ratio, AR = 2. In addition, LES of a circular jet is per-

formed to quantify the effects of non-uniform azimuthal curvature present in the non-

circular jets.

7.1 Rectangular Jet

7.1.1 Simulation Parameters

In Sec. 2.2.1, the mean velocity of the rectangular jet at the inflow plane was specified.

Broad mode forcing functions are used to promote unsteadiness and to model the naturally

developing jet observed experimentally. A low level of forcing is used at this Reynolds

number which corresponds to a maximum intensity at the inflow plane of urms/_ = 0.03.
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Thedomaindimensionsare12x 10 x 10 and grid dimensions are 1293. The last two

diameters of streamwise domain length are used as a buffer domain giving an "active"

computational length of 10 diameters in the streamwise directions. The grid is distributed

uniformly in all three directions.

7.1.2 Effect of Grid Resolution

The effect of grid resolution on the LES results is presented in this section. In the LES

approach, it is often difficult to separate the effect of truncation errors, aliasing errors, and

SGS model errors as the grid is refined. This is contrasted with the DNS approach where

all scales are resolved such that no SGS modeling errors are committed and the truncation

error reduces at a known rate with grid refinement. Therefore, it is easier to isolate the

effects of the numerical formation from those due to the physics of the problem.

The approach taken in the current study is to solve the problem numerically on a very

coarse grid (denoted as the level 1 grid) using the same parameters identified in the previ-

ous sections. After roughly ten flow through times, the results on the coarsest grid are pro-

longated to a grid with double the number of grid points in each direction. Those results

are used as initial conditions for a simulation on the level 2 grid which is run for ten flow

through times. This process is repeated until it is no longer practical to double the number

of grid points due to computer resource limitations. This procedure has the advantage of

efficient use of computer resources in that solutions on the coarsest grid are very cheap

due to the small number of grid points and large time step taken. Possible problems with

the processing of the runs and the numerical formulation are identified with minimal com-

puter resources, and confidence is gained in the solution procedure by the time the finest

(and most expensive) grid level is reached. The prolongated result from the coarser grid
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levelalsoprovidesa"better" initial conditionthanstartingfrom anartificially createdini-

tial conditionwhich is inconsistentwith the governingequations.

A by-productof this procedureis that resultsaregeneratedona numberof grids with

increasingresolutionwhichcanbeusedto addresstheissueof thesensitivityof theresults

to grid resolution.A summaryfor the grids usedin the resolutionstudy is givenin Table

7.1. along with the numberof streamwisepoints per fundamentalwavelength.The

increasedresolutionfor thefirst threegrid levelsis obtainedby doublingthe numberof

grid points while keepingthe domaindimensionsconstant.Continuingthis trend to the

fourth grid level would require208 x 2562grid points which is very computationally

expensive.A sufficientlylong simulationon this grid would requireroughly350 CrayC-

90hoursand920megawordsof memory.An alternativeis to examinetheresolutionof the

first five diameters(on thefourth grid levelonly) by fixing thenumberof grid pointsand

halving thedomaindimensions.This regionincludestheentirepotentialcoreandthethin

shearlayer regionnearthe inflow whereresolutionrequirementsaregreatest.

Table7.1Summary of grids usedin resolution study

Grid Level Ax, Ay, Az N x, Ny N z Lx, Ly L z Points per wave

1 0.386 x 0.3132 26 x 322 103 2.5

2 0.193 x 0.1562 52 x 642 103 5

3 0.096 x 0.0782 104 x 1282 103 10

4 0.048 x 0.0392 104 x 1282 53 20

Figure 7.1 shows the jet width, decay of centerline velocity, and fluctuating centerline

velocity for the 4 grid resolutions. The results show that with the level 1 grid with roughly

2.5 points per fundamental wavelength, very little unsteady is resolved by the grid (see

Fig. 7. lc). This results in a small spread rate in the minor axis plane and no axis-switching

(lower curves, Fig. 7. l a). Increasing the grid resolution to the second level increased the
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unsteadinessto 5% at x/De = 10. The results on the third level show a clear end to the

potential core, followed by a leveling off of the unsteadiness, axis-switching is clearly

shown in Fig. 7.1 a. Increasing the grid resolution to the fourth level has a small impact on

those trends. The biggest difference between the level 3 and 4 results is that the end of the

potential core is shifted upstream by roughly 0.7 diameters (from 4.1D on level 3 to 3.4D

on level 4). To show this point, the results on the third and fourth grid levels are replotted

in Figs. 7. ld -fwith the x/De coordinate shifted 0.7 diameters downstream for the fourth

level. The graph shows that the results on the third level are relatively insensitive to grid

refinement after the correction for potential core length. The discrepancy in the potential

core length is most likely due to differences in the broad mode forcing function on the

third and fourth grid level. The maximum rms intensity of the streamwise velocity pertur-

bation is fixed at 3% of the core velocity for all grids. However, since the time step is

halved with each grid refinement, the spectra content of the broad mode forcing is neces-

sarily different on each grid. As a result of the grid resolution study, simulations in Chaps.

6 and 7 utilize the grid resolution of grid level 3. Future work should include a simulation

on the 103 domain using 208 x 2562 grid points, although it will be costly.

7.1.3 Velocity Spectra

Figure 7.2 displays time traces and power spectra for u, v, w, and p at six spatial loca-

tions throughout the computational domain. The first three locations correspond to the

inflow plane (x/De = 0), roughly halfway (x/De = 4.13) and near the outflow plane (x/De =

8.34). The transverse location for the first three points is fixed in the center of the major

axis shear layer (y, z = 0.31, 0), while the last three transverse locations are fixed in the

minor axis shear layer, (y, z = 0, 0.63). The power spectra is computed by transforming the

time traces from the temporal domain to the frequency domain, and are useful in determin-

ing the range of temporal scales and dominant frequencies. The results in Figs. 7.2a and
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7.2dshowthatthe forcing functionis composedof a wide bandof frequenciesof similar

strength.At five diameters(Figs.7.2bande) the power spectra show that a dominate fre-

quency has emerged, while the highest frequency modes are several orders of magnitude

smaller. Near the outflow (Figs. 7.1c and f) the range of scales is more broad suggesting

that the flow is turbulent. A line with slope,f -5/3, is included in the figures which is used to

infer the presence of an inertial subrange and turbulent flow. The power spectra near the

outflow (Figs. 7.2c and f) show roughly one decade with thef -5/3 scaling.

7.1.4 Instantaneous Flow Field

Contours of streamwise velocity, pressure, vorticity magnitude, and streamwise vortic-

ity at t = 9 flow through times are shown in Figs. 7.3 - 7.9. Negative contours are drawn

with dashed lines while positive contours are drawn with solid lines. Local maximum and

minimum values are also indicated in the figure. Contours in the minor axis plane (Fig.

7.3c) show that the shear layers roll up at roughly, x/De = 3, similar to a plane mixing

layer. Pressure contours (Fig. 7.3b) show that the shear layers above and below the jet cen-

terline roll up in an organized and staggered fashion. At x/De = 4 - 5, the unsteady struc-

tures from the upper and lower shear layers meet at the jet centerline (y/Z) = 0), thus

signaling the end of the potential core. Downstream, the flow is characterized by smaller

scale, less organized structures. For x/De < 4 the vorticity is dominated by the azimuthal

components, i.e. there is no streamwise vorticity present. However, for x/De > 4, it is obvi-

ous that significant streamwise vorticity has been generated.

Figure 7.4c shows that shear layer roll up in the major axis plane is suppressed by roll

up in the minor axis plane. Thus, the spreading of the jet in the major axis plane is sup-

pressed resulting in a switching of the major and minor dimensions of the jet at x/De = 7.

109



The axis-switchingat t = 9 is clearly seen by comparing streamwise velocity contours at

the cross-section, x/De = 2.44 (Fig. 7.6) and x/De = 9.75 (Fig. 7.9).

7.1.5 Time-Averaged Flow Field

In the previous section, the flow field was examined at one instant in time to describe

the formation and development of the unsteady structures. In this section, the impact of the

unsteady structures on the mean flow is examined by time-averaging the results over a

period of 11 flow through times. The results from the first flow through time are not

included in the time-averaging so that transients resulting from the initial conditions are

convected out of the domain. The results are then post-processed to compute statistical

quantities. This procedure results in roughly 1634 samples in the period of 11 flow

through times. The adequacy of sample size is addressed in the next section. The raw data

files from the simulation occupy roughly 16 gigabytes of disk space.

Contours of Time-Averaged Flow Field

The time-averaged contours of streamwise velocity are shown in Fig. 7.10. Comparing

contours of streamwise velocity confirms that axis-switching has indeed taken place at

roughly seven diameters as was suggested by examining the instantaneous contours at t =

9 flow through times. Figure 7.10e and f shows that roll up and interaction of structures

result in rapid spreading in the minor axis plane only. The end of the potential core occurs

at roughly x/De = 4.5, where the velocity along the jet centerline is no longer equal to the

core velocity and begins to decrease due to entrainment of ambient fluid.

Profiles of First and Second Moment Quantities

In this section detailed profiles of time-averaged velocity, pressure and the six unique

Reynolds stress components are shown. In addition, jet widths in the major and minor axis
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planes,entrainmentrate,centerlinevelocity andfluctuatingcenterlinevelocity aregiven.

Thenumericalresultsarecomparedwith availableexperimentalresults.

Time-averagedand fluctuating velocity componentsare normalizedwith the local

velocity on thejet centerline,UCL and transverse coordinates are normalized by the local

jet width defined by the transverse distance where U/UcL = 0.5. Figure 7.11 a shows that

axis-switching takes place at x/De = 6.8. Tsuchiya (1985) reported the axis-switching

location of their 2:1 AR jet from a smoothly contoured nozzle to be x/De = 6.0. A second

axis-switching was reported at x/De = 25 which is beyond the computational domain used

in this study. Experiments of turbulent jets from contoured nozzles (Quinn 1995) show the

first axis-switching to be as far as x/De = 12. A measure of entrainment into the jet (Fig.

7.11b) is provided by computing the difference in mass flux at the cross-section, x, and

that at the inflow, Q(x)-Qo, where Q(x)= IIpU(x, y,z)dydz and Q0 = IIpU(0, y,z)dydz.

Figure 7.1 lc shows the decay of centerline velocity with streamwise distance. The end of

the potential core is predicted at x/De = 4.0, which is in excellent agreement with the

experimentally measured value of x/De = 4.1 by Tsuchiya (1985). The development of

fluctuating velocity on the jet centerline is shown in Fig. 7.1 ld. For x/De < 4 the velocity

fluctuations on the centerline are small. Near the end of the potential core, the fluctuating

velocity rises sharply which is a result of the unsteady structures from the mixing layers

meeting at the centerline. Downstream of the potential core, the fluctuating velocity is

roughly constant when scaled with the local centerline velocity.

Profiles of time-averaged streamwise velocity are shown in Fig. 7.12 at various

streamwise locations. For comparison, the experimental results of Quinn (1995) at x/De =

10 are included. The LES results at x/De = 9 are in excellent agreement with the experi-

mental results. Self-similar profiles are predicted in the minor axis plane downstream of

the potential core, while non-similar ones are predicted in the major axis plane. This
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observationis consistentwith theexperimentalstudiesof Sforzaet al. (1966),Trentacoste

and Sforza (1967),and Tsuchiya(1985). Figure 7.13 showssomeself-similarity of the

time-averagedlateralvelocitycomponent,V, along the y axis at the last two cross-sections

(x/De > 7). Note that negative (positive) transverse velocity at the top (bottom) edge of the

jet is consistent with fluid being entrained into jet. The lateral velocity along the z axis

should be zero due to symmetry. The numerical results predict small lateral velocity along

the z axis. Time-averaged transverse velocity profiles are shown in Fig. 7.14 which are

clearly non-similar along the z axis. The transverse component should be close to zero

along the y axis due to symmetry. Krothapalli et al. (1981) reported similar trends for rect-

angular jets from smoothly contoured nozzles at higher aspect ratios AR = 16.7. Time-

averaged pressure profiles displayed in Fig. 7.15 show small positive values in the poten-

tial core followed by large negative values downstream of the potential core.

The normal components of the Reynolds stress tensor (plotted as rms values) are

shown in Figs. 7.16 - 7.18, while the shear components are shown in Figs. 7.19 - 7.21. In

general, profiles of the normal components are relatively flat along the y axis near the cen-

terline, while off center peaks are present along the z axis downstream of the potential

core. Upstream of the end of the potential core, the peaks in the normal components corre-

spond to unsteadiness in the mixing layers separating the jet core from the ambient sur-

roundings.

Peak values are higher (20 - 30%) than those reported for a rectangular jet by Quinn

(1995). Similar trends exist for the shear components. The shear components of the Rey-

nolds stresses show that the dominant components are predicted for <u'v'> along the y

axis (Fig. 7.19a) and <u 'w'> along the z axis (Fig. 7.20b).
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7.1.6 Two-Point Velocity Correlations

In this section, results of two-point velocity correlations taken on the jet centerline at

two cross-sections are presented. The correlations are used to estimate the size of the

coherent structures along the jet centerline downstream of the potential core. In addition,

the correlations are used to access the placement of the freestream boundaries in the com-

putation. Large correlation coefficients at the edges of the computational domain indicate

that freestream boundaries are too close to the centerline.

The transverse size of the coherent structures was estimated using two-point spatial

correlations which requires prescribing the spatial separation, r, along the transverse direc-

tion with zero time separation. The two-point correlation is given by:

Rij(_o + _) = (ui(_o, t)u)(P o + _, t))
[ ( uj( _o,02) (uj( _o+ _, 02) ] 1/2 (7.1)

where < > denotes time-averaging, ro = (Xo,Yo, zo) denotes the location of the correlation,

and _ denotes the separation distance and direction of the correlation. An estimate of the

structure size can be obtained by fitting a parabola through the data points near y = 0 and z

= 0 in Figs. 7.22 - 7.24. In each figure, the top plot represents the correlation with the sep-

aration distance along the y axis, while the bottom plot is along the z axis. The correlations

show that events near the jet centerline are uncorrelated with those near the edge of the

domain, thus justifying the placement of the free stream boundaries in the computation.

7.1.7 Budgets

In this section a detailed term by term budget is presented for the resolved time-aver-

aged momentum equations and the Reynolds stress transport equations. The imbalance in

the terms of the resulting equation can then be used to access the adequacy of the sample
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size. The momentum and Reynolds stress budgets can also be used for turbulence model-

ing of complex three-dimensional jets. Computation of budget terms for the plane mixing

layer was performed by Rogers and Moser (1994). Demuren et al. (1996) used DNS data

to develop turbulence models for the pressure diffusion in mixing layers and wakes.

Momentum Equation

The mean momentum equation for the resolved velocities is derived by time-averaging

the filtered equations of motion given by Eq. (2.8). Omitting the details of the derivation,

the result becomes:

aU i aU_ aP 1 a2ui (3--_j) (3--_y)_ = - Uyaxj _ + ReaxjOxj (ui'uj'> - (qi.i) (7.2)

where U i = (u-_) and P = ($) denotes the time-averaged velocity and pressure, respec-

tively. The first three terms on the RHS of Eq. (7.2) represent the convection, pressure gra-

dient, and viscous diffusion terms, respectively.

For statistically stationary results, the terms on the RHS of Eq. (7.2) should sum to

zero indicating that the time derivative of the average velocity is also zero. The fourth term

on the RHS of (7.2) represents the resolved stresses due to unsteadiness of the velocity

field and is similar to the Reynolds stress term in the Reynolds Averaged Navier-Stokes

(RANS) equations. This term is computed directly in the large-eddy simulation approach.

The last term on the RHS of Eq. (7.2) represents the contribution of the unresolved

stresses. The concept of LES is that a large portion of the energy containing large scale

stresses (fourth term on RHS) is resolved in the computation, compared with the unre-

solved portion which is modeled (last term on RHS).
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Profilesof budgettermsfor the U momentum equation are shown in Fig. 7.25 along

the y and z axis at the location, x/De = 9. Since the unresolved stresses, qij, are not avail-

able from the LES results, the eddy viscosity model given by Eq. (2.9) is used to compute

the last term in Eq. (7.2). The resulting profiles in Figs. 7.25 - 7.30 have been passed

through a filter to remove some high frequency noise which tends to obscure the trends.

The sum of the terms on the RHS of Eq. (7.2) is represented by the symbols. The profiles

show that the imbalance is relatively small compared to the convection and resolved Rey-

nolds stress terms, and that the convection terms balance the Reynolds stress terms. The

results also show that the unresolved SGS stresses are quite small compared with the

resolved Reynolds stresses, validating the LES. The budgets for the V momentum equa-

tion in Fig. 7.26 show that along the y axis, the pressure gradient term balances the

resolved Reynolds stress term at y/D -+2.

The budget terms along the z axis are smaller in comparison as would be expected

from symmetry arguments. Figure 7.27 shows similar trends for the W equation. The sense

of the pressure gradient term for the V and W equation is consistent with fluid being

entrained into the jet on a time-averaged basis.

Resolved Reynolds Stress Equation

The transport equations for the resolved Reynolds stresses are derived by first subtract-

ing the filtered equations of motion, Eq. (2.8), from the time-averaged filtered equations,

Eq. (7.2). The result is a transport equation for the ith component of the resolved fluctuat-

ing velocity component. Time-averaging the quantity; ui'. [ui'equation] +ui'.luj'equation l

gives the transport equation for the resolved Reynolds stresses. Again, omitting the details

of the derivation:
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,, Uk_____(ui,uj,) V _ui , _uj]"_< U i u j > ----" -- -- "k

Oxk(UiUjUk) -, <uj' ) + <u:O*')']--'OXj_] -Ree('_'-x-xk_-_xk)2OuiOu) + ReO2<ui'u)')OxjOxj

_r(u. 'Sqik') + (u i'L J _xk k>J] (7.3)

The first six terms on the RHS of Eq. (7.3) represent convection of the Reynolds

stresses by the mean flow, turbulent production, turbulent dissipation, fluctuating velocity/

pressure gradient coupling, turbulent diffusion, and viscous diffusion, respectively. The

last term on the RHS of Eq. (7.3) represents the contribution of the unresolved stresses to

the resolved Reynolds Stresses equation. As with the momentum budget, the SGS model

is used to estimate this term.

Figure 7.33 shows profiles of the <u 'u '> budget of the resolved Reynolds stress equa-

tion at the same location as the momentum budgets. It can be seen that a large positive pro-

duction term is opposed by a negative velocity pressure gradient term. Convection and

turbulent diffusion are also significant. Turbulent dissipation and viscous diffusion are

small. The contribution of the SGS term is estimated to have a modest negative contribu-

tion. Budgets for the <u'u'> and <u'u'> are shown in Figs. 7.29 and 7.30a, respectively.

The results show that the imbalance is of the same order as some of the individual

terms near the jet centerline. The imbalance is most likely due to the unresolved terms

which are estimated. The dominate role of the very smallest scales (which are not resolved

in LES) is in the dissipation of turbulent kinetic energy into heat. Since the smallest scales

are not resolved, the turbulent dissipation term in Eq. (7.3) does not resemble the term in

the fully resolved Reynolds stress equation. As a result, there is a large positive imbalance

due to this discrepancy. Indeed, in some experimental studies which measure budgets of
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the Reynolds stress equations, the imbalance is labeled as the turbulent dissipation

because it cannot be accurately measured. The budget for the <u'u'> equation from the

DNS of the rectangular jet (case iii of Chap. 6) is shown in Fig. 7.30b. The overall balance

of terms is better since the dissipation scales are resolved.

7.2 Elliptic Jet

In this section, the results of a large eddy simulation of a 2:1 AR elliptic jet at ReDe =

75,000 with broad mode forcing are presented. The grid and domain parameters are iden-

tical to those described for the LES of the rectangular jet. The jet boundary layer at the

inflow is generated by using, n = 2 for the exponent of the super-elliptic coordinate sys-

tem. Figure 7.31 shows that the mixing layer in the potential core of the elliptic jet rolls up

preferentially in the minor axis plane at the expense of mixing in the major axis plane. The

roll ups are not as orderly and well-defined as in the rectangular jet. Contours at the cross-

section, x/D e = 4.88 (Fig. 7.35d) reveal the generation of significant streamwise vorticity

around the circumference of the jet boundary layer resulting in the distortion of the elliptic

cross-section. It is apparent that the major and minor axis have already switched by the

cross-section, x/D e = 9.75 (Fig. 7.37).

Time-averaged contours of streamwise velocity shown in Fig. 7.38 reveal that axis-

switching also takes place in the elliptic jet. Time-averaged results for the elliptic jet simu-

lation are presented in Figs 7.39 - 7.49. The instantaneous results are averaged over eight

flow through times resulting in a sample size of roughly 1200. The plot of jet widths (Fig.

7.39a) confirms that axis-switching has taken place at xfO e = 5.9 and that the width in the

major axis plane actually decreases slightly in agreement with the experimental results of

unexcited 2:1 AR elliptic jets studied by Hussain and Husain (1989). The axis-switching

location in that study occurred at roughly x/D e = 5.0. Fig. 7.39b shows that the elliptic jet
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entrainsmorefluid thantherectangularjet which is consistentwith experimentalobserva-

tions. A summaryof axis switching location is providedin Table7.2 alongwith those

from experiment.

Table 7.2 Summary of axis switching location from LES

Study Geometry AR Location, x/D e

Tsuchiya et al. (1985) Rectangular 2 6.0

Quinn (1985) .... 11.0

Current .... 6.8

Hussain and Husain (1989) Elliptic " 5.0

Current .... 5.9

7.3 Round Jet

Large eddy simulation of a round jet is performed to provide a control for the simula-

tions of rectangular and elliptic jets. Parameters for the round jet simulation are identical

to those for the non-circular jets, with the obvious geometrical difference. For the round

jet simulation, some asymmetry of profiles along the y and z axis exist beyond 6 diameters

due to insufficient sample size. Perfectly symmetrical time-averaged profiles are difficult

to achieve in experiments and computations of fully turbulent flow.

Contours of instantaneous streamwise velocity, pressure and vorticity for the round jet

are shown in Figs. 7.50 and 7.51 in the x-y and x-z plane, respectively. Cross-sectional

contours are shown in Figs. 7.52 - 7.56. The contours in the x-y and x-z plane show that

regular, planar rings are not formed with the broad mode forcing function. Cross-sectional

contours at x/D e = 4.88 (Fig. 7.54) show significant generation of streamwise vorticity

along the jet boundary layer resulting in a distortion of the initially circular profile. Further

downstream, the vortices breakdown into small scale structures.
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Time-averagedcontoursof streamwisevelocity shownin Fig. 7.57 reveal that jet

widths in the x-y and x-z planes grow at the same rate and axis-switching does not take

place. Time-averaged quantities from the round jet simulation are shown in Fig. 7.58 for

comparison with the non-circular jet simulations.
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Chapter 8

SUMMARY AND CONCLUSIONS

Three-dimensional simulations of turbulent jets with rectangular and elliptical cross-

section were simulated with a newly developed numerical formulation. At low Reynolds

numbers the full Navier-Stokes equations were solved, while at higher Reynolds numbers

the filtered equations of motion were solved along with a sub-grid scale model. The time-

dependent results from the simulation are used to compute statistical quantities and to

compare the results to experiment. The results are shown to agree favorably with experi-

ment. Quantitative agreement with particular experiments should not be expected due to

differences in initial conditions such as shape and aspect ratio of the jet nozzle, intensity

level and spectral content of the jet exit boundary layer and Reynolds number. The present

results show significant influence of the spectral content of perturbation in the inlet mixing

layer. Indeed, features of the jet flow such as the axis switching location and the length of

the potential core vary by as much as 60% from experiment to experiment.

Specific conclusions from the current study are outlined below. The first section

describes conclusions about the numerical formulation, while the second section discusses

conclusions based on the numerical simulation of complex jets. Contributions which make

the present work unique are also highlighted. The final section outlines the suggestions for

future work.
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8.1 Numerical Formulation

Numerical Approximation of Convection Terms

It has been shown that many popular numerical approximations for convection terms

lead to large dispersion and/or dissipation errors of the high-frequency modes, thus requir-

ing upwards of 20-30 spatial points per wavelength for acceptable accuracy. Higher-order

accurate compact schemes are used in this study which lead to greatly reduced dispersion

errors and no dissipation errors. Solutions to relevant benchmark problems indicate that 6

- 8 points per wavelength are sufficient with the fourth-order compact scheme for accept-

able accuracy. The implicit treatment of derivatives results in a global formulation closer

to spectral methods than explicit finite difference schemes.

Enforcement of Continuity Equation with Higher-Order Compact Schemes

While compact schemes have been widely used for compressible simulations, their use

for incompressible flows is complicated by the lack of an evolution equation for pressure.

A numerical formulation was developed in the present study which solves a Poisson equa-

tion for pressure using a higher-order compact scheme. The improved accuracy and reso-

lution characteristics was demonstrated through the solution of benchmark problems

governed by the Euler and Navier-Stokes equations. It is confirmed that overall accuracy is

limited by the weakest link.

Extension to Curvilinear Grids

The numerical formulation was extended to curvilinear grids which was used to con-

centrate grid points in the mixing layers of the rectangular jet near the inflow. Downstream

of the potential core, the flow is fully turbulent. Clustering of the grid to resolve large gra-

dients due to small scale structures is not possible without the use of time-varying, adap-

tive grids (which is outside the scope of the present study). Therefore, the grid is gradually
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relaxedto uniform spacingin this region.Uniform gridsenablemanipulationof thedis-

cretePoissonequationleadingto areducedstencilsizeandcostascomparedwith thecur-

vilinear gridsmakingthecomputationalrateroughlyoneorderof magnitudeless.Partof

thereasonfor the increasein computationalrateis thatconvergenceratesfor themultigrid

solutionof the Poissonequationdeterioratewith grid clusteringand largeaspectratio.

Therefore,theuniform gridformulationwasutilizedfor mostof thesimulationspresented

in Chaps.6and7.

8.2 Simulation of Complex Jets

Conclusions from the direct and large eddy simulations of complex jets are outlined in

this section. Aspects of the current work which are different from the current state of the

art are highlighted.

Effect of Reynolds Number

The results from the DNS of non-circular jets at low Reynolds numbers (Re = 750) in

Chap. 6 show that many features of experiments at moderate to high Reynolds number are

not captured. For example, low Reynolds number simulations in the present study and

those by Miller et al (1995) show that the end of the potential core is not predicted within

10 diameters, while experiments and the simulations at higher Reynolds number of the

current study show an end at roughly x/D e - 4. Also transition to turbulent flow does not

occur within the computational domain resulting in symmetrical structures and spikes in

the velocity power spectra that are characteristic of laminar/transitional flow. It is clear

that simulations at higher Reynolds numbers must be performed for comparison with

experiment in the literature.

186



Streamwise Extent

Current state of the art for the large eddy simulation of square and rectangular jets at

moderate to high Reynolds number is that due to Grinstein and DeVore (1992), Grinstein

(1993), and Grinstein (1996). The streamwise extent of those simulations covers the very

near field (i.e., only the potential core region, x/D e < 5). The current study is unique in the

sense that the near and medium fields are simulated. This allows the so-called characteris-

tic decay region downstream of the potential core to be studied. In addition, the experi-

mentally observed axis switching of the 2:1 rectangular jet at x/D e = 7 is captured.

Subgrid Scale Model

The current study employs an explicit Smagorinsky subgrid scale model which allows

the model effects to be quantified. Moreover, the effect of the unresolved scales was com-

pared to those of the resolved scales by computing budget terms of the mean momentum

equations. This analysis shows that the contribution of the unresolved stresses which are

modeled are 15 times smaller than the those of the resolved stresses which are directly

computed in the simulation.

Budgets for Mean Momentum and Reynolds Stress Equations

A numerical database of the time-dependent results from the simulations has been

archived. The database was post-processed to compute statistical quantities and detailed

budgets of the resolved mean momentum and Reynolds stress equations. In general, bal-

ance of the terms of the mean momentum equation are quite good. Balance of terms in the

Reynolds stress equations was incomplete because of the under-prediction of turbulent

dissipation which occurs mostly at small scales not resolved in the simulation. The data-

base can be used to aid in the turbulence modeling of complex jets.
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Effect of Initial Conditions

The results of the current study show that the initial conditions of the jet boundary

layer at the inflow strongly effect the resulting dynamics. Forcing functions consisting of a

single discrete mode show that the mixing layers in the potential core rolls up into planar

vortex rings. At low Reynolds number, the fundamental mode saturates and decays, while

at higher Reynolds number, transition to turbulence takes place. Axis-switching was

observed in both cases. The addition of a subharmonic to the forcing function at low Rey-

nolds number is shown to result in the formation of intense vortex ribs near the jet center-

line which lead to a partial bifurcation of the jet. Axis switching was not observed in this

case.

Forcing functions based on random, broad band modes show that the roll up of the

mixing layers in the potential core is fundamentally different than that due to discrete forc-

ing. Planar vortex rings are not formed with broad mode forcing and a staggered roll up of

the upper and lower mixing layer in the minor axis plane only is observed. As a result,

mixing in the major axis plane is suppressed leading to switching of the major and minor

axis at x/D e = 6.6 for the rectangular jet and x/rOe = 5.9 for the elliptic jet at higher Rey-

nolds number. Naturally developing non-circular jets (i.e. without strong discrete forcing)

are better modeled with broad mode forcing. Therefore, simulations forced with a single

sinusoidal mode leading to the formation of planar vortex rings provide an incomplete

description of the axis switching phenomenon in naturally developing jets. The results of

the present study provide such a picture.
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Effect of Non-Uniform Boundary Layer Curvature

Effects of non-uniform azimuthal curvature of the jet boundary layer at the nozzle are

studied though large eddy simulations of rectangular, elliptic, and circular jets. The results

show that the elliptic jet entrains more fluid into the jet core than the rectangular jet.

Grid Resolution

A grid resolution study was performed through simulations on 4 grid levels, by dou-

bling the number of grid points on successive levels. The coarsest grid resolution (with 2.5

points per streamwise fundamental wavelength) does not capture unsteadiness (Urms =

0.005 at x/D e = 10) which is essential for accurate prediction of the potential core length

and subsequent axis switching. Increasing the grid resolution to the second level results in

an increased level of unsteadiness (Urms = 0.05 at x/D e = 10) but does not predict the end of

the potential core or axis switching within the computational domain. The results from the

level 3 grid (with 10 points per streamwise fundamental wavelength) show a well defined

end of the potential core and axis switching in good agreement with experiment. The

effect of increasing the grid resolution in the near field to the fourth level, does not signifi-

cantly change those predictions. The main effect is that the prediction of the end of the

potential core is shifted upstream by 0.7 diameters, which is most likely due to differences

in the broad mode forcing function on the third and fourth grid levels. When the results on

the fourth level are corrected for this difference, relatively grid independent results are

achieved. The resolution requirement of roughly 10 streamwise grid points per wavelength

reached through this exercise is consistent with conclusions from the solution of bench-

mark problems using compact schemes in Chap. 5.
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8.3 Future Work

Future research directions are identified in this section. In the area of the numerical

formulation, the efficiency of the Poisson solver with curvilinear grids could be improved

which would lead to competitive computational rates as compared with the uniform grid

formulation. This would be used take advantage of grid clustering capabilities in the very

near field. The resolution after the end of the potential core would still be necessarily uni-

form due to the presence of small scale turbulent structures. Time-varying, adaptive

meshes would be required to track those structures.

While the present numerical simulation extends the state of the art past the end of the

potential core into the characteristic decay region, it would be desirable to simulate all 3

regions of the non-circular jet; (i) potential core, (ii) characteristic decay, and (iii) axisym-

metric region. It would also be desirable to increase resolution to the fourth grid level of

the resolution study for the entire domain length. Code improvements would be required

to reduce the required wall clock time and memory for the simulation such as the use of

parallel processing and Fortran buffer in/buffer out statements (reading and writing to

disk to save memory allocation). Parallelization should be a major goal of future work.

The simulations can also be extended to solve compressible flows for acoustic predictions.

There, accurate solutions are required for the unsteady flow field which is then used as the

source term of an acoustic analogy equation.
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